HiPrune: Training-Free Visual Token Pruning via Hierarchical Attention in Vision-Language Models
- URL: http://arxiv.org/abs/2508.00553v2
- Date: Wed, 06 Aug 2025 08:56:34 GMT
- Title: HiPrune: Training-Free Visual Token Pruning via Hierarchical Attention in Vision-Language Models
- Authors: Jizhihui Liu, Feiyi Du, Guangdao Zhu, Niu Lian, Jun Li, Bin Chen,
- Abstract summary: HiPrune is a training-free and model-agnostic token Pruning framework for vision encoders.<n>It exploits the Hierarchical attention structure within vision encoders.<n>It preserves up to 99.3% task accuracy with only 33.3% tokens, and maintaining 99.5% accuracy with just 11.1% tokens.
- Score: 6.306822764683807
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Vision-Language Models (VLMs) encode images into lengthy sequences of visual tokens, leading to excessive computational overhead and limited inference efficiency. While prior efforts prune or merge tokens to address this issue, they often rely on special tokens (e.g., CLS) or require task-specific training, hindering scalability across architectures. In this paper, we propose HiPrune, a training-free and model-agnostic token Pruning framework that exploits the Hierarchical attention structure within vision encoders. We identify that middle layers attend to object-centric regions, while deep layers capture global contextual features. Based on this observation, HiPrune selects three types of informative tokens: (1) Anchor tokens with high attention in object-centric layers, (2) Buffer tokens adjacent to anchors for spatial continuity, and (3) Register tokens with strong attention in deep layers for global summarization. Our method requires no retraining and integrates seamlessly with any ViT-based VLM. Extensive experiments on LLaVA-1.5, LLaVA-NeXT, and Qwen2.5-VL demonstrate that HiPrune achieves state-of-the-art pruning performance, preserving up to 99.3% task accuracy with only 33.3% tokens, and maintaining 99.5% accuracy with just 11.1% tokens. Meanwhile, it reduces inference FLOPs and latency by up to 9$\times$, showcasing strong generalization across models and tasks. Code is available at https://github.com/Danielement321/HiPrune.
Related papers
- Rethinking Visual Token Reduction in LVLMs under Cross-modal Misalignment [38.04426918886084]
Vision-Language Models (LVLMs) encode visual inputs as dense sequences of patch-level tokens to capture fine-grained semantics.<n>Previous efforts have explored visual token reduction either prior to or within the large language models (LLMs)<n>We introduce VisionDrop, a training-free, visual-only pruning framework that selects informative visual tokens based on intra-modal (visual-to-visual) attention.
arXiv Detail & Related papers (2025-06-27T14:55:40Z) - VScan: Rethinking Visual Token Reduction for Efficient Large Vision-Language Models [57.2662376527586]
VScan is a two-stage visual token reduction framework.<n>It addresses token redundancy by: (1) integrating complementary global and local scans with token merging during visual encoding, and (2) introducing pruning at intermediate layers of the language model.<n>VScan achieves a 2.91$times$ speedup in prefilling and a 10$times$ reduction in FLOPs, while retaining 95.4% of the original performance.
arXiv Detail & Related papers (2025-05-28T17:59:08Z) - FlowCut: Rethinking Redundancy via Information Flow for Efficient Vision-Language Models [16.818798800714177]
Large vision-language models (LVLMs) excel at multimodal understanding but suffer from high computational costs due to redundant vision tokens.<n>Existing pruning methods typically rely on single-layer attention scores to rank and prune redundant visual tokens.<n>We propose FlowCut, an information-flow-aware pruning framework, to mitigate the insufficiency of the current criterion.
arXiv Detail & Related papers (2025-05-26T05:54:48Z) - TokLIP: Marry Visual Tokens to CLIP for Multimodal Comprehension and Generation [80.90309237362526]
TokLIP is a visual tokenizer that enhances comprehension by semanticizing vector-quantized (VQ) tokens.<n>TokLIP integrates a low-level discrete VQ tokenizer with a ViT-based token encoder to capture high-level continuous semantics.
arXiv Detail & Related papers (2025-05-08T17:12:19Z) - Neural Discrete Token Representation Learning for Extreme Token Reduction in Video Large Language Models [50.214593234229255]
We introduce the novel task of Extreme Short Token Reduction, which aims to represent entire videos using a minimal set of discrete tokens.<n>On the Extreme Short Token Reduction task, our VQToken compresses sequences to just 0.07 percent of their original length while incurring only a 0.66 percent drop in accuracy on the NextQA-MC benchmark.
arXiv Detail & Related papers (2025-03-21T09:46:31Z) - ST$^3$: Accelerating Multimodal Large Language Model by Spatial-Temporal Visual Token Trimming [14.937905258757635]
$textbfST3$ is a framework designed to accelerate MLLM inference without retraining.<n>$textbfST3$ can be seamlessly integrated into existing pre-trained MLLMs.
arXiv Detail & Related papers (2024-12-28T10:17:29Z) - Boosting Multimodal Large Language Models with Visual Tokens Withdrawal for Rapid Inference [59.91176945361035]
We introduce Visual Tokens Withdrawal (VTW), a plug-and-play module to boost MLLMs for rapid inference.<n>VTW strategically withdraws vision tokens at a certain layer, enabling only text tokens to engage in subsequent layers.<n>Our approach can cut computational overhead by over 40% across diverse multimodal tasks while maintaining performance.
arXiv Detail & Related papers (2024-05-09T14:38:53Z) - AiluRus: A Scalable ViT Framework for Dense Prediction [95.1313839257891]
Vision transformers (ViTs) have emerged as a prevalent architecture for vision tasks owing to their impressive performance.
We propose to apply adaptive resolution for different regions in the image according to their importance.
We evaluate our proposed method on three different datasets and observe promising performance.
arXiv Detail & Related papers (2023-11-02T12:48:43Z) - Revisiting Token Pruning for Object Detection and Instance Segmentation [25.3324628669201]
We investigate token pruning to accelerate inference for object and instance segmentation.
We show a reduction in performance decline from 1.5 mAP to 0.3 mAP in both boxes and masks, compared to existing token pruning methods.
arXiv Detail & Related papers (2023-06-12T11:55:33Z) - Vision Transformer with Super Token Sampling [93.70963123497327]
Vision transformer has achieved impressive performance for many vision tasks.
It may suffer from high redundancy in capturing local features for shallow layers.
Super tokens attempt to provide a semantically meaningful tessellation of visual content.
arXiv Detail & Related papers (2022-11-21T03:48:13Z) - PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers [102.7922200135147]
This paper explores a better codebook for BERT pre-training of vision transformers.
By contrast, the discrete tokens in NLP field are naturally highly semantic.
We demonstrate that the visual tokens generated by the proposed perceptual codebook do exhibit better semantic meanings.
arXiv Detail & Related papers (2021-11-24T18:59:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.