Training-Free Class Purification for Open-Vocabulary Semantic Segmentation
- URL: http://arxiv.org/abs/2508.00557v1
- Date: Fri, 01 Aug 2025 11:55:12 GMT
- Title: Training-Free Class Purification for Open-Vocabulary Semantic Segmentation
- Authors: Qi Chen, Lingxiao Yang, Yun Chen, Nailong Zhao, Jianhuang Lai, Jie Shao, Xiaohua Xie,
- Abstract summary: FreeCP is a training-free class purification framework for semantic segmentation.<n>We conduct experiments across eight benchmarks to validate FreeCP's effectiveness.<n>Results demonstrate that FreeCP, as a plug-and-play module, significantly boosts segmentation performance when combined with other OVSS methods.
- Score: 72.87707878910896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning pre-trained vision-language models has emerged as a powerful approach for enhancing open-vocabulary semantic segmentation (OVSS). However, the substantial computational and resource demands associated with training on large datasets have prompted interest in training-free methods for OVSS. Existing training-free approaches primarily focus on modifying model architectures and generating prototypes to improve segmentation performance. However, they often neglect the challenges posed by class redundancy, where multiple categories are not present in the current test image, and visual-language ambiguity, where semantic similarities among categories create confusion in class activation. These issues can lead to suboptimal class activation maps and affinity-refined activation maps. Motivated by these observations, we propose FreeCP, a novel training-free class purification framework designed to address these challenges. FreeCP focuses on purifying semantic categories and rectifying errors caused by redundancy and ambiguity. The purified class representations are then leveraged to produce final segmentation predictions. We conduct extensive experiments across eight benchmarks to validate FreeCP's effectiveness. Results demonstrate that FreeCP, as a plug-and-play module, significantly boosts segmentation performance when combined with other OVSS methods.
Related papers
- Enhancing Interpretability Through Loss-Defined Classification Objective in Structured Latent Spaces [5.2542280870644715]
We introduce Latent Boost, a novel approach that integrates advanced distance metric learning into supervised classification tasks.<n>Latent Boost improves classification interpretability, as demonstrated by higher Silhouette scores, while accelerating training convergence.
arXiv Detail & Related papers (2024-12-11T16:25:17Z) - Category-Adaptive Cross-Modal Semantic Refinement and Transfer for Open-Vocabulary Multi-Label Recognition [59.203152078315235]
We propose a novel category-adaptive cross-modal semantic refinement and transfer (C$2$SRT) framework to explore the semantic correlation.<n>The proposed framework consists of two complementary modules, i.e., intra-category semantic refinement (ISR) module and inter-category semantic transfer (IST) module.<n>Experiments on OV-MLR benchmarks clearly demonstrate that the proposed C$2$SRT framework outperforms current state-of-the-art algorithms.
arXiv Detail & Related papers (2024-12-09T04:00:18Z) - Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation [21.20806568508201]
We show how to leverage class text information to mitigate distribution drifts encountered by vision-language models (VLMs) during test-time inference.<n>We propose to generate pseudo-labels for the test-time samples by exploiting generic class text embeddings as fixed centroids of a label assignment problem.<n>Experiments on multiple popular test-time adaptation benchmarks presenting diverse complexity empirically show the superiority of CLIP-OT.
arXiv Detail & Related papers (2024-11-26T00:15:37Z) - BaFTA: Backprop-Free Test-Time Adaptation For Zero-Shot Vision-Language Models [20.88680592729709]
We propose a novel backpropagation-free algorithm BaFTA for test-time adaptation of vision-language models.
BaFTA directly estimates class centroids using online clustering within a projected embedding space.
We demonstrate that BaFTA consistently outperforms state-of-the-art test-time adaptation methods in both effectiveness and efficiency.
arXiv Detail & Related papers (2024-06-17T08:16:24Z) - Pay Attention to Your Neighbours: Training-Free Open-Vocabulary Semantic Segmentation [19.20874993309959]
vision-language foundation models, such as CLIP, have showcased remarkable effectiveness in numerous zero-shot image-level tasks.
We propose a baseline for training-free OVSS, termed Neighbour-Aware CLIP (NACLIP)
Our method enforces localization of patches in the self-attention of CLIP's vision transformer which, despite being crucial for dense prediction tasks, has been overlooked in the OVSS literature.
arXiv Detail & Related papers (2024-04-12T01:08:04Z) - Global Knowledge Calibration for Fast Open-Vocabulary Segmentation [124.74256749281625]
We introduce a text diversification strategy that generates a set of synonyms for each training category.
We also employ a text-guided knowledge distillation method to preserve the generalizable knowledge of CLIP.
Our proposed model achieves robust generalization performance across various datasets.
arXiv Detail & Related papers (2023-03-16T09:51:41Z) - Open World Classification with Adaptive Negative Samples [89.2422451410507]
Open world classification is a task in natural language processing with key practical relevance and impact.
We propose an approach based on underlineadaptive underlinesamples (ANS) designed to generate effective synthetic open category samples in the training stage.
ANS achieves significant improvements over state-of-the-art methods.
arXiv Detail & Related papers (2023-03-09T21:12:46Z) - Semantic Representation and Dependency Learning for Multi-Label Image
Recognition [76.52120002993728]
We propose a novel and effective semantic representation and dependency learning (SRDL) framework to learn category-specific semantic representation for each category.
Specifically, we design a category-specific attentional regions (CAR) module to generate channel/spatial-wise attention matrices to guide model.
We also design an object erasing (OE) module to implicitly learn semantic dependency among categories by erasing semantic-aware regions.
arXiv Detail & Related papers (2022-04-08T00:55:15Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition.
We propose in this paper a novel active learning framework that we call Maximum Discrepancy for Active Learning (MCDAL)
In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them.
arXiv Detail & Related papers (2021-07-23T06:57:08Z) - Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal
and Clustered Embeddings [25.137859989323537]
We propose an effective Unsupervised Domain Adaptation (UDA) strategy, based on a feature clustering method.
We introduce two novel learning objectives to enhance the discriminative clustering performance.
arXiv Detail & Related papers (2020-11-25T10:06:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.