MultiSHAP: A Shapley-Based Framework for Explaining Cross-Modal Interactions in Multimodal AI Models
- URL: http://arxiv.org/abs/2508.00576v1
- Date: Fri, 01 Aug 2025 12:19:18 GMT
- Title: MultiSHAP: A Shapley-Based Framework for Explaining Cross-Modal Interactions in Multimodal AI Models
- Authors: Zhanliang Wang, Kai Wang,
- Abstract summary: Multimodal AI models have achieved impressive performance in tasks that require integrating information from multiple modalities, such as vision and language.<n>How to explain cross-modal interactions in multimodal AI models remains a major challenge.
- Score: 5.011371514152517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal AI models have achieved impressive performance in tasks that require integrating information from multiple modalities, such as vision and language. However, their "black-box" nature poses a major barrier to deployment in high-stakes applications where interpretability and trustworthiness are essential. How to explain cross-modal interactions in multimodal AI models remains a major challenge. While existing model explanation methods, such as attention map and Grad-CAM, offer coarse insights into cross-modal relationships, they cannot precisely quantify the synergistic effects between modalities, and are limited to open-source models with accessible internal weights. Here we introduce MultiSHAP, a model-agnostic interpretability framework that leverages the Shapley Interaction Index to attribute multimodal predictions to pairwise interactions between fine-grained visual and textual elements (such as image patches and text tokens), while being applicable to both open- and closed-source models. Our approach provides: (1) instance-level explanations that reveal synergistic and suppressive cross-modal effects for individual samples - "why the model makes a specific prediction on this input", and (2) dataset-level explanation that uncovers generalizable interaction patterns across samples - "how the model integrates information across modalities". Experiments on public multimodal benchmarks confirm that MultiSHAP faithfully captures cross-modal reasoning mechanisms, while real-world case studies demonstrate its practical utility. Our framework is extensible beyond two modalities, offering a general solution for interpreting complex multimodal AI models.
Related papers
- U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
We study the challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data.
Using a precise information-theoretic definition of interactions, our key contribution is the derivation of lower and upper bounds.
We show how these theoretical results can be used to estimate multimodal model performance, guide data collection, and select appropriate multimodal models for various tasks.
arXiv Detail & Related papers (2023-06-07T15:44:53Z) - MultiViz: An Analysis Benchmark for Visualizing and Understanding
Multimodal Models [103.9987158554515]
MultiViz is a method for analyzing the behavior of multimodal models by scaffolding the problem of interpretability into 4 stages.
We show that the complementary stages in MultiViz together enable users to simulate model predictions, assign interpretable concepts to features, perform error analysis on model misclassifications, and use insights from error analysis to debug models.
arXiv Detail & Related papers (2022-06-30T18:42:06Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - M2Lens: Visualizing and Explaining Multimodal Models for Sentiment
Analysis [28.958168542624062]
We present an interactive visual analytics system, M2Lens, to visualize and explain multimodal models for sentiment analysis.
M2Lens provides explanations on intra- and inter-modal interactions at the global, subset, and local levels.
arXiv Detail & Related papers (2021-07-17T15:54:27Z) - Does my multimodal model learn cross-modal interactions? It's harder to
tell than you might think! [26.215781778606168]
Cross-modal modeling seems crucial in multimodal tasks, such as visual question answering.
We propose a new diagnostic tool, empirical multimodally-additive function projection (EMAP), for isolating whether or not cross-modal interactions improve performance for a given model on a given task.
For seven image+text classification tasks (on each of which we set new state-of-the-art benchmarks), we find that, in many cases, removing cross-modal interactions results in little to no performance degradation.
arXiv Detail & Related papers (2020-10-13T17:45:28Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
We develop a contrastive framework for generative model learning, allowing us to train the model not just by the commonality between modalities, but by the distinction between "related" and "unrelated" multimodal data.
Under our proposed framework, the generative model can accurately identify related samples from unrelated ones, making it possible to make use of the plentiful unlabeled, unpaired multimodal data.
arXiv Detail & Related papers (2020-07-02T15:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.