Can User Feedback Help Issue Detection? An Empirical Study on a One-billion-user Online Service System
- URL: http://arxiv.org/abs/2508.00593v1
- Date: Fri, 01 Aug 2025 12:49:07 GMT
- Title: Can User Feedback Help Issue Detection? An Empirical Study on a One-billion-user Online Service System
- Authors: Shuyao Jiang, Jiazhen Gu, Wujie Zheng, Yangfan Zhou, Michael R. Lyu,
- Abstract summary: We conduct an empirical study on 50,378,766 user feedback items from six real-world services in a one-billion-user online service system.<n>Our results show that a large proportion of user feedback provides irrelevant information about system issues.<n>We find severe issues that cannot be easily detected based solely on user feedback characteristics.
- Score: 28.43595612060133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: It has long been suggested that user feedback, typically written in natural language by end-users, can help issue detection. However, for large-scale online service systems that receive a tremendous amount of feedback, it remains a challenging task to identify severe issues from user feedback. Aims: To develop a better feedback-based issue detection approach, it is crucial first to gain a comprehensive understanding of the characteristics of user feedback in real production systems. Method: In this paper, we conduct an empirical study on 50,378,766 user feedback items from six real-world services in a one-billion-user online service system. We first study what users provide in their feedback. We then examine whether certain features of feedback items can be good indicators of severe issues. Finally, we investigate whether adopting machine learning techniques to analyze user feedback is reasonable. Results: Our results show that a large proportion of user feedback provides irrelevant information about system issues. As a result, it is crucial to filter out issue-irrelevant information when processing user feedback. Moreover, we find severe issues that cannot be easily detected based solely on user feedback characteristics. Finally, we find that the distributions of the feedback topics in different time intervals are similar. This confirms that designing machine learning-based approaches is a viable direction for better analyzing user feedback. Conclusions: We consider that our findings can serve as an empirical foundation for feedback-based issue detection in large-scale service systems, which sheds light on the design and implementation of practical issue detection approaches.
Related papers
- User Feedback in Human-LLM Dialogues: A Lens to Understand Users But Noisy as a Learning Signal [58.43749783815486]
We study implicit user feedback in two user-LM interaction datasets.<n>We find that the contents of user feedback can improve model performance in short human-designed questions.<n>We also find that the usefulness of user feedback is largely tied to the quality of the user's initial prompt.
arXiv Detail & Related papers (2025-07-30T23:33:29Z) - Can Users Detect Biases or Factual Errors in Generated Responses in Conversational Information-Seeking? [13.790574266700006]
We investigate the limitations of response generation in conversational information-seeking systems.
The study addresses the problem of query answerability and the challenge of response incompleteness.
Our analysis reveals that it is easier for users to detect response incompleteness than query answerability.
arXiv Detail & Related papers (2024-10-28T20:55:00Z) - Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback.
The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied.
We focus on how the evaluation of task-oriented dialogue systems ( TDSs) is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated.
arXiv Detail & Related papers (2024-04-19T16:45:50Z) - System-Level Natural Language Feedback [83.24259100437965]
We show how to use feedback to formalize system-level design decisions in a human-in-the-loop-process.
We conduct two case studies of this approach for improving search query and dialog response generation.
We show the combination of system-level and instance-level feedback brings further gains.
arXiv Detail & Related papers (2023-06-23T16:21:40Z) - Continually Improving Extractive QA via Human Feedback [59.49549491725224]
We study continually improving an extractive question answering (QA) system via human user feedback.
We conduct experiments involving thousands of user interactions under diverse setups to broaden the understanding of learning from feedback over time.
arXiv Detail & Related papers (2023-05-21T14:35:32Z) - Simulating Bandit Learning from User Feedback for Extractive Question
Answering [51.97943858898579]
We study learning from user feedback for extractive question answering by simulating feedback using supervised data.
We show that systems initially trained on a small number of examples can dramatically improve given feedback from users on model-predicted answers.
arXiv Detail & Related papers (2022-03-18T17:47:58Z) - Improving Conversational Question Answering Systems after Deployment
using Feedback-Weighted Learning [69.42679922160684]
We propose feedback-weighted learning based on importance sampling to improve upon an initial supervised system using binary user feedback.
Our work opens the prospect to exploit interactions with real users and improve conversational systems after deployment.
arXiv Detail & Related papers (2020-11-01T19:50:34Z) - An Empirical Study of Clarifying Question-Based Systems [15.767515065224016]
We conduct an online experiment by deploying an experimental system, which interacts with users by asking clarifying questions against a product repository.
We collect both implicit interaction behavior data and explicit feedback from users showing that: (a) users are willing to answer a good number of clarifying questions (11-21 on average), but not many more than that.
arXiv Detail & Related papers (2020-08-01T15:10:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.