Beyond Fixed: Variable-Length Denoising for Diffusion Large Language Models
- URL: http://arxiv.org/abs/2508.00819v1
- Date: Fri, 01 Aug 2025 17:56:07 GMT
- Title: Beyond Fixed: Variable-Length Denoising for Diffusion Large Language Models
- Authors: Jinsong Li, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Jiaqi Wang, Dahua Lin,
- Abstract summary: Diffusion Large Language Models offer efficient parallel generation and capable global modeling.<n>The dominant application ofDLLMs is hindered by the need for a statically predefined generation length.<n>We introduce DAEDAL, a novel training-free denoising strategy that enables Dynamic Adaptive Length Expansion.
- Score: 74.15250326312179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion Large Language Models (DLLMs) are emerging as a powerful alternative to the dominant Autoregressive Large Language Models, offering efficient parallel generation and capable global context modeling. However, the practical application of DLLMs is hindered by a critical architectural constraint: the need for a statically predefined generation length. This static length allocation leads to a problematic trade-off: insufficient lengths cripple performance on complex tasks, while excessive lengths incur significant computational overhead and sometimes result in performance degradation. While the inference framework is rigid, we observe that the model itself possesses internal signals that correlate with the optimal response length for a given task. To bridge this gap, we leverage these latent signals and introduce DAEDAL, a novel training-free denoising strategy that enables Dynamic Adaptive Length Expansion for Diffusion Large Language Models. DAEDAL operates in two phases: 1) Before the denoising process, DAEDAL starts from a short initial length and iteratively expands it to a coarse task-appropriate length, guided by a sequence completion metric. 2) During the denoising process, DAEDAL dynamically intervenes by pinpointing and expanding insufficient generation regions through mask token insertion, ensuring the final output is fully developed. Extensive experiments on DLLMs demonstrate that DAEDAL achieves performance comparable, and in some cases superior, to meticulously tuned fixed-length baselines, while simultaneously enhancing computational efficiency by achieving a higher effective token ratio. By resolving the static length constraint, DAEDAL unlocks new potential for DLLMs, bridging a critical gap with their Autoregressive counterparts and paving the way for more efficient and capable generation.
Related papers
- Hybrid Autoregressive-Diffusion Model for Real-Time Streaming Sign Language Production [0.0]
We introduce a hybrid approach combining autoregressive and diffusion models to generate Sign Language Production (SLP) models.<n>To capture fine-grained body movements, we design a Multi-Scale Pose Representation module that separately extracts detailed features from distinct arttors.<n>We also introduce a Confidence-Aware Causal Attention mechanism that utilizes joint-level confidence scores to dynamically guide the pose generation process.
arXiv Detail & Related papers (2025-07-12T01:34:50Z) - Accelerating Diffusion Language Model Inference via Efficient KV Caching and Guided Diffusion [16.99620863197586]
Diffusion language models offer parallel token generation and inherent bidirectionality.<n>State-of-the-art diffusion models (e.g., Dream 7B, LLaDA 8B) suffer from slow inference.<n>We introduce Guided Diffusion, a training-free method that uses a lightweight pretrained autoregressive model to supervise token unmasking.<n>For the first time, diffusion language models achieve a comparable and even faster latency as the widely adopted autoregressive models.
arXiv Detail & Related papers (2025-05-27T17:39:39Z) - Dimple: Discrete Diffusion Multimodal Large Language Model with Parallel Decoding [53.82301522384719]
We propose Dimple, the first Discrete Multimodal Large Language Model (DMLLM)<n>We design a novel training paradigm that combines an initial autoregressive phase with a subsequent diffusion phase.<n>Dimple-7B surpasses LLaVA- in performance by 3.9%, demonstrating that DMLLM can achieve performance comparable to that of autoregressive models.
arXiv Detail & Related papers (2025-05-22T17:55:04Z) - Fast Autoregressive Models for Continuous Latent Generation [49.079819389916764]
Autoregressive models have demonstrated remarkable success in sequential data generation, particularly in NLP.<n>Recent work, the masked autoregressive model (MAR) bypasses quantization by modeling per-token distributions in continuous spaces using a diffusion head.<n>We propose Fast AutoRegressive model (FAR), a novel framework that replaces MAR's diffusion head with a lightweight shortcut head.
arXiv Detail & Related papers (2025-04-24T13:57:08Z) - PowerAttention: Exponentially Scaling of Receptive Fields for Effective Sparse Attention [73.26995918610669]
Large Language Models (LLMs) face efficiency bottlenecks due to the quadratic complexity of the attention mechanism when processing long contexts.<n>We introduce PowerAttention, a novel sparse attention design that facilitates effective and complete context extension.<n>Experiments demonstrate that PowerAttention outperforms existing static sparse attention methods by $5sim 40%$.
arXiv Detail & Related papers (2025-03-05T15:24:11Z) - Breaking the Context Bottleneck on Long Time Series Forecasting [6.36010639533526]
Long-term time-series forecasting is essential for planning and decision-making in economics, energy, and transportation.<n>Recent advancements have enhanced the efficiency of these models, but the challenge of effectively leveraging longer sequences persists.<n>We propose the Logsparse Decomposable Multiscaling (LDM) framework for the efficient and effective processing of long sequences.
arXiv Detail & Related papers (2024-12-21T10:29:34Z) - Multimodal Latent Language Modeling with Next-Token Diffusion [111.93906046452125]
Multimodal generative models require a unified approach to handle both discrete data (e.g., text and code) and continuous data (e.g., image, audio, video)<n>We propose Latent Language Modeling (LatentLM), which seamlessly integrates continuous and discrete data using causal Transformers.
arXiv Detail & Related papers (2024-12-11T18:57:32Z) - Lossless Acceleration of Large Language Model via Adaptive N-gram Parallel Decoding [2.642212767247493]
We introduce Adaptive N-gram Parallel Decoding (ANPD), which accelerates inference by allowing the simultaneous generation of multiple tokens.
ANPD preserves the integrity of the original output while enhancing processing speed.
In experiments, models such as LLaMA and its fine-tuned variants have shown speed improvements up to 3.67x.
arXiv Detail & Related papers (2024-04-10T16:11:09Z) - Bidirectional Long-Range Parser for Sequential Data Understanding [3.76054468268713]
We introduce BLRP (Bidirectional Long-Range), a novel and versatile attention mechanism designed to increase performance and efficiency on long-sequence tasks.
We show the benefits and versatility of our approach on vision and language domains by demonstrating competitive results against state-of-the-art methods.
arXiv Detail & Related papers (2024-04-08T05:45:03Z) - Confident Adaptive Language Modeling [95.45272377648773]
CALM is a framework for dynamically allocating different amounts of compute per input and generation timestep.
We demonstrate the efficacy of our framework in reducing compute -- potential speedup of up to $times 3$ -- while provably maintaining high performance.
arXiv Detail & Related papers (2022-07-14T17:00:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.