A Survey on Deep Multi-Task Learning in Connected Autonomous Vehicles
- URL: http://arxiv.org/abs/2508.00917v1
- Date: Tue, 29 Jul 2025 22:17:28 GMT
- Title: A Survey on Deep Multi-Task Learning in Connected Autonomous Vehicles
- Authors: Jiayuan Wang, Farhad Pourpanah, Q. M. Jonathan Wu, Ning Zhang,
- Abstract summary: Connected autonomous vehicles (CAVs) must simultaneously perform multiple tasks, such as object detection, semantic segmentation, depth estimation, trajectory prediction, motion prediction, and behaviour prediction.<n>Traditionally, these tasks are addressed using distinct models, which leads to high deployment costs, increased computational overhead, and challenges in achieving real-time performance.<n>Multi-task learning (MTL) has emerged as a promising solution that enables the joint learning of multiple tasks within a single unified model.
- Score: 21.18445786285742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Connected autonomous vehicles (CAVs) must simultaneously perform multiple tasks, such as object detection, semantic segmentation, depth estimation, trajectory prediction, motion prediction, and behaviour prediction, to ensure safe and reliable navigation in complex environments. Vehicle-to-everything (V2X) communication enables cooperative driving among CAVs, thereby mitigating the limitations of individual sensors, reducing occlusions, and improving perception over long distances. Traditionally, these tasks are addressed using distinct models, which leads to high deployment costs, increased computational overhead, and challenges in achieving real-time performance. Multi-task learning (MTL) has recently emerged as a promising solution that enables the joint learning of multiple tasks within a single unified model. This offers improved efficiency and resource utilization. To the best of our knowledge, this survey is the first comprehensive review focused on MTL in the context of CAVs. We begin with an overview of CAVs and MTL to provide foundational background. We then explore the application of MTL across key functional modules, including perception, prediction, planning, control, and multi-agent collaboration. Finally, we discuss the strengths and limitations of existing methods, identify key research gaps, and provide directions for future research aimed at advancing MTL methodologies for CAV systems.
Related papers
- Continual Learning for VLMs: A Survey and Taxonomy Beyond Forgetting [70.83781268763215]
Vision-language models (VLMs) have achieved impressive performance across diverse multimodal tasks by leveraging large-scale pre-training.<n>VLMs face unique challenges such as cross-modal feature drift, parameter interference due to shared architectures, and zero-shot capability erosion.<n>This survey aims to serve as a comprehensive and diagnostic reference for researchers developing lifelong vision-language systems.
arXiv Detail & Related papers (2025-08-06T09:03:10Z) - TEM^3-Learning: Time-Efficient Multimodal Multi-Task Learning for Advanced Assistive Driving [22.22943635900334]
TEM3-Learning is a novel framework that jointly optimize driver emotion recognition, driver behavior recognition, traffic context recognition, and vehicle behavior recognition.<n>It achieves state-of-the-art accuracy across all four tasks, maintaining a lightweight architecture with fewer than 6 million parameters and delivering an impressive 142.32 FPS inference speed.
arXiv Detail & Related papers (2025-06-22T16:12:27Z) - DINO-CoDT: Multi-class Collaborative Detection and Tracking with Vision Foundation Models [11.34839442803445]
We propose a multi-class collaborative detection and tracking framework tailored for diverse road users.<n>We first present a detector with a global spatial attention fusion (GSAF) module, enhancing multi-scale feature learning for objects of varying sizes.<n>Next, we introduce a tracklet RE-IDentification (REID) module that leverages visual semantics with a vision foundation model to effectively reduce ID SWitch (IDSW) errors.
arXiv Detail & Related papers (2025-06-09T02:49:10Z) - CAML: Collaborative Auxiliary Modality Learning for Multi-Agent Systems [38.20651868834145]
We propose Collaborative Auxiliary Modality Learning (CAML), a novel multi-modal multi-agent framework.<n>We show that CAML achieves up to a $bf 58.1%$ improvement in accident detection.<n>We also validate CAML on real-world aerial-ground robot data for collaborative semantic segmentation.
arXiv Detail & Related papers (2025-02-25T03:59:40Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.<n>The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.<n>We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - SGW-based Multi-Task Learning in Vision Tasks [8.459976488960269]
As the scale of datasets expands and the complexity of tasks increases, knowledge sharing becomes increasingly challenging.
We propose an information bottleneck knowledge extraction module (KEM)
This module aims to reduce inter-task interference by constraining the flow of information, thereby reducing computational complexity.
arXiv Detail & Related papers (2024-10-03T13:56:50Z) - Traj-LLM: A New Exploration for Empowering Trajectory Prediction with Pre-trained Large Language Models [12.687494201105066]
This paper proposes Traj-LLM, the first to investigate the potential of using Large Language Models (LLMs) to generate future motion from agents' past/observed trajectories and scene semantics.
LLMs' powerful comprehension abilities capture a spectrum of high-level scene knowledge and interactive information.
Emulating the human-like lane focus cognitive function, we introduce lane-aware probabilistic learning powered by the pioneering Mamba module.
arXiv Detail & Related papers (2024-05-08T09:28:04Z) - Visual Exemplar Driven Task-Prompting for Unified Perception in
Autonomous Driving [100.3848723827869]
We present an effective multi-task framework, VE-Prompt, which introduces visual exemplars via task-specific prompting.
Specifically, we generate visual exemplars based on bounding boxes and color-based markers, which provide accurate visual appearances of target categories.
We bridge transformer-based encoders and convolutional layers for efficient and accurate unified perception in autonomous driving.
arXiv Detail & Related papers (2023-03-03T08:54:06Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
In this paper, we investigate the transfer performance of various types of self-supervised methods, including MoCo and SimCLR, on three downstream tasks.
We find that their performances are sub-optimal or even lag far behind the single-task baseline.
We propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training.
arXiv Detail & Related papers (2022-09-19T12:15:31Z) - High-Modality Multimodal Transformer: Quantifying Modality & Interaction
Heterogeneity for High-Modality Representation Learning [112.51498431119616]
This paper studies efficient representation learning for high-modality scenarios involving a large set of diverse modalities.
A single model, HighMMT, scales up to 10 modalities (text, image, audio, video, sensors, proprioception, speech, time-series, sets, and tables) and 15 tasks from 5 research areas.
arXiv Detail & Related papers (2022-03-02T18:56:20Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z) - A Unified Object Motion and Affinity Model for Online Multi-Object
Tracking [127.5229859255719]
We propose a novel MOT framework that unifies object motion and affinity model into a single network, named UMA.
UMA integrates single object tracking and metric learning into a unified triplet network by means of multi-task learning.
We equip our model with a task-specific attention module, which is used to boost task-aware feature learning.
arXiv Detail & Related papers (2020-03-25T09:36:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.