Rethinking Multimodality: Optimizing Multimodal Deep Learning for Biomedical Signal Classification
- URL: http://arxiv.org/abs/2508.00963v1
- Date: Fri, 01 Aug 2025 14:12:10 GMT
- Title: Rethinking Multimodality: Optimizing Multimodal Deep Learning for Biomedical Signal Classification
- Authors: Timothy Oladunni, Alex Wong,
- Abstract summary: This study proposes a novel perspective on multimodal deep learning for biomedical signal classification.<n>We systematically analyze how complementary feature domains impact model performance.<n>We demonstrate that optimal domain fusion isn't about the number of modalities, but the quality of their inherent complementarity.
- Score: 5.811275732167591
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study proposes a novel perspective on multimodal deep learning for biomedical signal classification, systematically analyzing how complementary feature domains impact model performance. While fusing multiple domains often presumes enhanced accuracy, this work demonstrates that adding modalities can yield diminishing returns, as not all fusions are inherently advantageous. To validate this, five deep learning models were designed, developed, and rigorously evaluated: three unimodal (1D-CNN for time, 2D-CNN for time-frequency, and 1D-CNN-Transformer for frequency) and two multimodal (Hybrid 1, which fuses 1D-CNN and 2D-CNN; Hybrid 2, which combines 1D-CNN, 2D-CNN, and a Transformer). For ECG classification, bootstrapping and Bayesian inference revealed that Hybrid 1 consistently outperformed the 2D-CNN baseline across all metrics (p-values < 0.05, Bayesian probabilities > 0.90), confirming the synergistic complementarity of the time and time-frequency domains. Conversely, Hybrid 2's inclusion of the frequency domain offered no further improvement and sometimes a marginal decline, indicating representational redundancy; a phenomenon further substantiated by a targeted ablation study. This research redefines a fundamental principle of multimodal design in biomedical signal analysis. We demonstrate that optimal domain fusion isn't about the number of modalities, but the quality of their inherent complementarity. This paradigm-shifting concept moves beyond purely heuristic feature selection. Our novel theoretical contribution, "Complementary Feature Domains in Multimodal ECG Deep Learning," presents a mathematically quantifiable framework for identifying ideal domain combinations, demonstrating that optimal multimodal performance arises from the intrinsic information-theoretic complementarity among fused domains.
Related papers
- Spiking Neural Networks with Temporal Attention-Guided Adaptive Fusion for imbalanced Multi-modal Learning [32.60363000758323]
We propose a temporal attention-guided adaptive fusion framework for multimodal spiking neural networks (SNNs)<n>The proposed framework implements adaptive fusion, especially in the temporal dimension, and alleviates the modality imbalance during multimodal learning.<n>The system resolves temporal misalignment through learnable time-warping operations and faster modality convergence coordination than baseline SNNs.
arXiv Detail & Related papers (2025-05-20T15:55:11Z) - Layer-wise Quantization for Quantized Optimistic Dual Averaging [75.4148236967503]
We develop a general layer-wise quantization framework with tight variance and code-length bounds, adapting to the heterogeneities over the course of training.<n>We propose a novel Quantized Optimistic Dual Averaging (QODA) algorithm with adaptive learning rates, which achieves competitive convergence rates for monotone VIs.
arXiv Detail & Related papers (2025-05-20T13:53:58Z) - FgC2F-UDiff: Frequency-guided and Coarse-to-fine Unified Diffusion Model for Multi-modality Missing MRI Synthesis [6.475175425060296]
We propose a novel unified synthesis model, the Frequency-guided and Coarse-to-fine Unified Diffusion Model (FgC2F-UDiff)
arXiv Detail & Related papers (2025-01-07T04:42:45Z) - Multimodal Outer Arithmetic Block Dual Fusion of Whole Slide Images and Omics Data for Precision Oncology [6.418265127069878]
We propose the use of omic embeddings during early and late fusion to capture complementary information from local (patch-level) to global (slide-level) interactions.<n>This dual fusion strategy enhances interpretability and classification performance, highlighting its potential for clinical diagnostics.
arXiv Detail & Related papers (2024-11-26T13:25:53Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Multi-scale Quaternion CNN and BiGRU with Cross Self-attention Feature Fusion for Fault Diagnosis of Bearing [5.3598912592106345]
Deep learning has led to significant advances in bearing fault diagnosis (FD)
We propose a novel FD model by integrating multiscale quaternion convolutional neural network (MQCNN), bidirectional gated recurrent unit (BiG), and cross self-attention feature fusion (CSAFF)
arXiv Detail & Related papers (2024-05-25T07:55:02Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - TTMFN: Two-stream Transformer-based Multimodal Fusion Network for
Survival Prediction [7.646155781863875]
We propose a novel framework named Two-stream Transformer-based Multimodal Fusion Network for survival prediction (TTMFN)
In TTMFN, we present a two-stream multimodal co-attention transformer module to take full advantage of the complex relationships between different modalities.
The experiment results on four datasets from The Cancer Genome Atlas demonstrate that TTMFN can achieve the best performance or competitive results.
arXiv Detail & Related papers (2023-11-13T02:31:20Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.