3D Reconstruction via Incremental Structure From Motion
- URL: http://arxiv.org/abs/2508.01019v1
- Date: Fri, 01 Aug 2025 18:45:05 GMT
- Title: 3D Reconstruction via Incremental Structure From Motion
- Authors: Muhammad Zeeshan, Umer Zaki, Syed Ahmed Pasha, Zaar Khizar,
- Abstract summary: We present a detailed implementation of the incremental SfM pipeline, focusing on the consistency of geometric estimation and the effect of iterative refinement through bundle adjustment.<n>Results support the practical utility of incremental SfM as a reliable method for sparse 3D reconstruction in visually structured environments.
- Score: 1.4999444543328293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate 3D reconstruction from unstructured image collections is a key requirement in applications such as robotics, mapping, and scene understanding. While global Structure from Motion (SfM) techniques rely on full image connectivity and can be sensitive to noise or missing data, incremental SfM offers a more flexible alternative. By progressively incorporating new views into the reconstruction, it enables the system to recover scene structure and camera motion even in sparse or partially overlapping datasets. In this paper, we present a detailed implementation of the incremental SfM pipeline, focusing on the consistency of geometric estimation and the effect of iterative refinement through bundle adjustment. We demonstrate the approach using a real dataset and assess reconstruction quality through reprojection error and camera trajectory coherence. The results support the practical utility of incremental SfM as a reliable method for sparse 3D reconstruction in visually structured environments.
Related papers
- MUSt3R: Multi-view Network for Stereo 3D Reconstruction [11.61182864709518]
We propose an extension of DUSt3R from pairs to multiple views, that addresses all aforementioned concerns.<n>We entail the model with a multi-layer memory mechanism which allows to reduce the computational complexity.<n>The framework is designed to perform 3D reconstruction both offline and online, and hence can be seamlessly applied to SfM and visual SLAM scenarios.
arXiv Detail & Related papers (2025-03-03T15:36:07Z) - Light3R-SfM: Towards Feed-forward Structure-from-Motion [34.47706116389972]
Light3R-SfM is a feed-forward, end-to-end learnable framework for efficient large-scale Structure-from-Motion.<n>This work pioneers a data-driven, feed-forward SfM approach, paving the way toward scalable, accurate, and efficient 3D reconstruction in the wild.
arXiv Detail & Related papers (2025-01-24T20:46:04Z) - Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - SMORE: Simultaneous Map and Object REconstruction [66.66729715211642]
We present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR.<n>We take a holistic perspective and optimize a compositional model of a dynamic scene that decomposes the world into rigidly-moving objects and the background.
arXiv Detail & Related papers (2024-06-19T23:53:31Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
We propose a novel approach for 3D mesh reconstruction from multi-view images.<n>Our method takes inspiration from large reconstruction models that use a transformer-based triplane generator and a Neural Radiance Field (NeRF) model trained on multi-view images.
arXiv Detail & Related papers (2024-06-09T05:19:24Z) - Part123: Part-aware 3D Reconstruction from a Single-view Image [54.589723979757515]
Part123 is a novel framework for part-aware 3D reconstruction from a single-view image.
We introduce contrastive learning into a neural rendering framework to learn a part-aware feature space.
A clustering-based algorithm is also developed to automatically derive 3D part segmentation results from the reconstructed models.
arXiv Detail & Related papers (2024-05-27T07:10:21Z) - Variable Radiance Field for Real-World Category-Specific Reconstruction from Single Image [25.44715538841181]
Reconstructing category-specific objects using Neural Radiance Field (NeRF) from a single image is a promising yet challenging task.<n>We propose Variable Radiance Field (VRF), a novel framework capable of efficiently reconstructing category-specific objects.<n>VRF achieves state-of-the-art performance in both reconstruction quality and computational efficiency.
arXiv Detail & Related papers (2023-06-08T12:12:02Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z) - Learning monocular 3D reconstruction of articulated categories from
motion [39.811816510186475]
Video self-supervision forces the consistency of consecutive 3D reconstructions by a motion-based cycle loss.
We introduce an interpretable model of 3D template deformations that controls a 3D surface through the displacement of a small number of local, learnable handles.
We obtain state-of-the-art reconstructions with diverse shapes, viewpoints and textures for multiple articulated object categories.
arXiv Detail & Related papers (2021-03-30T13:50:27Z) - VIO-Aided Structure from Motion Under Challenging Environments [12.111638631118026]
We present a robust and efficient Structure from Motion pipeline for accurate 3D reconstruction under challenging environments.
Specifically, we propose a geometric verification method to filter out mismatches by considering the prior geometric configuration of candidate image pairs.
arXiv Detail & Related papers (2021-01-24T06:35:52Z) - SCFusion: Real-time Incremental Scene Reconstruction with Semantic
Completion [86.77318031029404]
We propose a framework that performs scene reconstruction and semantic scene completion jointly in an incremental and real-time manner.
Our framework relies on a novel neural architecture designed to process occupancy maps and leverages voxel states to accurately and efficiently fuse semantic completion with the 3D global model.
arXiv Detail & Related papers (2020-10-26T15:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.