UniEgoMotion: A Unified Model for Egocentric Motion Reconstruction, Forecasting, and Generation
- URL: http://arxiv.org/abs/2508.01126v1
- Date: Sat, 02 Aug 2025 00:41:20 GMT
- Title: UniEgoMotion: A Unified Model for Egocentric Motion Reconstruction, Forecasting, and Generation
- Authors: Chaitanya Patel, Hiroki Nakamura, Yuta Kyuragi, Kazuki Kozuka, Juan Carlos Niebles, Ehsan Adeli,
- Abstract summary: We introduce Egocentric Motion Generation and Egocentric Motion Forecasting, two novel tasks that utilize first-person images for scene-aware motion synthesis.<n>We propose UniEgoMotion, a unified conditional motion diffusion model with a novel head-centric motion representation tailored for egocentric devices.<n>UniEgoMotion achieves state-of-the-art performance in egocentric motion reconstruction and is the first to generate motion from a single egocentric image.
- Score: 21.70816226149573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Egocentric human motion generation and forecasting with scene-context is crucial for enhancing AR/VR experiences, improving human-robot interaction, advancing assistive technologies, and enabling adaptive healthcare solutions by accurately predicting and simulating movement from a first-person perspective. However, existing methods primarily focus on third-person motion synthesis with structured 3D scene contexts, limiting their effectiveness in real-world egocentric settings where limited field of view, frequent occlusions, and dynamic cameras hinder scene perception. To bridge this gap, we introduce Egocentric Motion Generation and Egocentric Motion Forecasting, two novel tasks that utilize first-person images for scene-aware motion synthesis without relying on explicit 3D scene. We propose UniEgoMotion, a unified conditional motion diffusion model with a novel head-centric motion representation tailored for egocentric devices. UniEgoMotion's simple yet effective design supports egocentric motion reconstruction, forecasting, and generation from first-person visual inputs in a unified framework. Unlike previous works that overlook scene semantics, our model effectively extracts image-based scene context to infer plausible 3D motion. To facilitate training, we introduce EE4D-Motion, a large-scale dataset derived from EgoExo4D, augmented with pseudo-ground-truth 3D motion annotations. UniEgoMotion achieves state-of-the-art performance in egocentric motion reconstruction and is the first to generate motion from a single egocentric image. Extensive evaluations demonstrate the effectiveness of our unified framework, setting a new benchmark for egocentric motion modeling and unlocking new possibilities for egocentric applications.
Related papers
- Diffusion-based 3D Hand Motion Recovery with Intuitive Physics [29.784542628690794]
We present a novel 3D hand motion recovery framework that enhances image-based reconstructions.<n>Our model captures the distribution of refined motion estimates conditioned on initial ones, generating improved sequences.<n>We identify valuable intuitive physics knowledge during hand-object interactions, including key motion states and their associated motion constraints.
arXiv Detail & Related papers (2025-08-03T16:44:24Z) - PlayerOne: Egocentric World Simulator [73.88786358213694]
PlayerOne is the first egocentric realistic world simulator.<n>It generates egocentric videos that are strictly aligned with the real scene human motion of the user captured by an exocentric camera.
arXiv Detail & Related papers (2025-06-11T17:59:53Z) - SViMo: Synchronized Diffusion for Video and Motion Generation in Hand-object Interaction Scenarios [48.09735396455107]
Hand-Object Interaction (HOI) generation has significant application potential.<n>Current 3D HOI motion generation approaches heavily rely on predefined 3D object models and lab-captured motion data.<n>We propose a novel framework that combines visual priors and dynamic constraints within a synchronized diffusion process to generate the HOI video and motion simultaneously.
arXiv Detail & Related papers (2025-06-03T05:04:29Z) - UniHM: Universal Human Motion Generation with Object Interactions in Indoor Scenes [26.71077287710599]
We propose UniHM, a unified motion language model that leverages diffusion-based generation for scene-aware human motion.<n>UniHM is the first framework to support both Text-to-Motion and Text-to-Human-Object Interaction (HOI) in complex 3D scenes.<n>Our approach introduces three key contributions: (1) a mixed-motion representation that fuses continuous 6DoF motion with discrete local motion tokens to improve motion realism; (2) a novel Look-Up-Free Quantization VAE that surpasses traditional VQ-VAEs in both reconstruction accuracy and generative performance; and (3) an enriched version of
arXiv Detail & Related papers (2025-05-19T07:02:12Z) - EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting [95.44545809256473]
EgoGaussian is a method capable of simultaneously reconstructing 3D scenes and dynamically tracking 3D object motion from RGB egocentric input alone.
We show significant improvements in terms of both dynamic object and background reconstruction quality compared to the state-of-the-art.
arXiv Detail & Related papers (2024-06-28T10:39:36Z) - DEMOS: Dynamic Environment Motion Synthesis in 3D Scenes via Local
Spherical-BEV Perception [54.02566476357383]
We propose the first Dynamic Environment MOtion Synthesis framework (DEMOS) to predict future motion instantly according to the current scene.
We then use it to dynamically update the latent motion for final motion synthesis.
The results show our method outperforms previous works significantly and has great performance in handling dynamic environments.
arXiv Detail & Related papers (2024-03-04T05:38:16Z) - EgoGen: An Egocentric Synthetic Data Generator [53.32942235801499]
EgoGen is a new synthetic data generator that can produce accurate and rich ground-truth training data for egocentric perception tasks.
At the heart of EgoGen is a novel human motion synthesis model that directly leverages egocentric visual inputs of a virtual human to sense the 3D environment.
We demonstrate EgoGen's efficacy in three tasks: mapping and localization for head-mounted cameras, egocentric camera tracking, and human mesh recovery from egocentric views.
arXiv Detail & Related papers (2024-01-16T18:55:22Z) - Ego-Body Pose Estimation via Ego-Head Pose Estimation [22.08240141115053]
Estimating 3D human motion from an egocentric video sequence plays a critical role in human behavior understanding and has various applications in VR/AR.
We propose a new method, Ego-Body Pose Estimation via Ego-Head Pose Estimation (EgoEgo), which decomposes the problem into two stages, connected by the head motion as an intermediate representation.
This disentanglement of head and body pose eliminates the need for training datasets with paired egocentric videos and 3D human motion.
arXiv Detail & Related papers (2022-12-09T02:25:20Z) - UnrealEgo: A New Dataset for Robust Egocentric 3D Human Motion Capture [70.59984501516084]
UnrealEgo is a new large-scale naturalistic dataset for egocentric 3D human pose estimation.
It is based on an advanced concept of eyeglasses equipped with two fisheye cameras that can be used in unconstrained environments.
We propose a new benchmark method with a simple but effective idea of devising a 2D keypoint estimation module for stereo inputs to improve 3D human pose estimation.
arXiv Detail & Related papers (2022-08-02T17:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.