NS-Net: Decoupling CLIP Semantic Information through NULL-Space for Generalizable AI-Generated Image Detection
- URL: http://arxiv.org/abs/2508.01248v1
- Date: Sat, 02 Aug 2025 07:58:15 GMT
- Title: NS-Net: Decoupling CLIP Semantic Information through NULL-Space for Generalizable AI-Generated Image Detection
- Authors: Jiazhen Yan, Fan Wang, Weiwei Jiang, Ziqiang Li, Zhangjie Fu,
- Abstract summary: NS-Net is a novel framework that decouples semantic information from CLIP's visual features, followed by contrastive learning to capture intrinsic distributional differences between real and generated images.<n>Experiments show that NS-Net outperforms existing state-of-the-art methods, achieving a 7.4% improvement in detection accuracy.
- Score: 14.7077339945096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid progress of generative models, such as GANs and diffusion models, has facilitated the creation of highly realistic images, raising growing concerns over their misuse in security-sensitive domains. While existing detectors perform well under known generative settings, they often fail to generalize to unknown generative models, especially when semantic content between real and fake images is closely aligned. In this paper, we revisit the use of CLIP features for AI-generated image detection and uncover a critical limitation: the high-level semantic information embedded in CLIP's visual features hinders effective discrimination. To address this, we propose NS-Net, a novel detection framework that leverages NULL-Space projection to decouple semantic information from CLIP's visual features, followed by contrastive learning to capture intrinsic distributional differences between real and generated images. Furthermore, we design a Patch Selection strategy to preserve fine-grained artifacts by mitigating semantic bias caused by global image structures. Extensive experiments on an open-world benchmark comprising images generated by 40 diverse generative models show that NS-Net outperforms existing state-of-the-art methods, achieving a 7.4\% improvement in detection accuracy, thereby demonstrating strong generalization across both GAN- and diffusion-based image generation techniques.
Related papers
- DeeCLIP: A Robust and Generalizable Transformer-Based Framework for Detecting AI-Generated Images [14.448350657613368]
DeeCLIP is a novel framework for detecting AI-generated images.<n>It incorporates DeeFuser, a fusion module that combines high-level and low-level features.<n>We trained exclusively on 4-class ProGAN data, DeeCLIP achieves an average accuracy of 89.90%.
arXiv Detail & Related papers (2025-04-28T15:06:28Z) - Zooming In on Fakes: A Novel Dataset for Localized AI-Generated Image Detection with Forgery Amplification Approach [69.01456182499486]
textbfBR-Gen is a large-scale dataset of 150,000 locally forged images with diverse scene-aware annotations.<n>textbfNFA-ViT is a Noise-guided Forgery Amplification Vision Transformer that enhances the detection of localized forgeries.
arXiv Detail & Related papers (2025-04-16T09:57:23Z) - Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detections [50.343419243749054]
Anomaly Detection (AD) involves identifying deviations from normal data distributions.<n>We propose a novel approach that conditions the prompts of the text encoder based on image context extracted from the vision encoder.<n>Our method achieves state-of-the-art performance, improving performance by 2% to 29% across different metrics on 14 datasets.
arXiv Detail & Related papers (2025-04-15T10:42:25Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.<n>In this paper, we investigate how detection performance varies across model backbones, types, and datasets.<n>We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
The rapid development of photo-realistic face generation methods has raised significant concerns in society and academia.<n>Although existing approaches mainly capture face forgery patterns using image modality, other modalities like fine-grained noises and texts are not fully explored.<n>We propose a novel multi-modal fine-grained CLIP (MFCLIP) model, which mines comprehensive and fine-grained forgery traces across image-noise modalities.
arXiv Detail & Related papers (2024-09-15T13:08:59Z) - Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE) is a novel embedding space specifically designed for deepfake detection.
CoDE is trained via contrastive learning by additionally enforcing global-local similarities.
arXiv Detail & Related papers (2024-07-29T18:00:10Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - TcGAN: Semantic-Aware and Structure-Preserved GANs with Individual
Vision Transformer for Fast Arbitrary One-Shot Image Generation [11.207512995742999]
One-shot image generation (OSG) with generative adversarial networks that learn from the internal patches of a given image has attracted world wide attention.
We propose a novel structure-preserved method TcGAN with individual vision transformer to overcome the shortcomings of the existing one-shot image generation methods.
arXiv Detail & Related papers (2023-02-16T03:05:59Z) - Fusing Global and Local Features for Generalized AI-Synthesized Image
Detection [31.35052580048599]
We design a two-branch model to combine global spatial information from the whole image and local informative features from patches selected by a novel patch selection module.
We collect a highly diverse dataset synthesized by 19 models with various objects and resolutions to evaluate our model.
arXiv Detail & Related papers (2022-03-26T01:55:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.