Self-Enhanced Image Clustering with Cross-Modal Semantic Consistency
- URL: http://arxiv.org/abs/2508.01254v1
- Date: Sat, 02 Aug 2025 08:12:57 GMT
- Title: Self-Enhanced Image Clustering with Cross-Modal Semantic Consistency
- Authors: Zihan Li, Wei Sun, Jing Hu, Jianhua Yin, Jianlong Wu, Liqiang Nie,
- Abstract summary: We propose a framework based on cross-modal semantic consistency for efficient image clustering.<n>Our framework first builds a strong foundation via Cross-Modal Semantic Consistency.<n>In the first stage, we train lightweight clustering heads to align with the rich semantics of the pre-trained model.<n>In the second stage, we introduce a Self-Enhanced fine-tuning strategy.
- Score: 57.961869351897384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While large language-image pre-trained models like CLIP offer powerful generic features for image clustering, existing methods typically freeze the encoder. This creates a fundamental mismatch between the model's task-agnostic representations and the demands of a specific clustering task, imposing a ceiling on performance. To break this ceiling, we propose a self-enhanced framework based on cross-modal semantic consistency for efficient image clustering. Our framework first builds a strong foundation via Cross-Modal Semantic Consistency and then specializes the encoder through Self-Enhancement. In the first stage, we focus on Cross-Modal Semantic Consistency. By mining consistency between generated image-text pairs at the instance, cluster assignment, and cluster center levels, we train lightweight clustering heads to align with the rich semantics of the pre-trained model. This alignment process is bolstered by a novel method for generating higher-quality cluster centers and a dynamic balancing regularizer to ensure well-distributed assignments. In the second stage, we introduce a Self-Enhanced fine-tuning strategy. The well-aligned model from the first stage acts as a reliable pseudo-label generator. These self-generated supervisory signals are then used to feed back the efficient, joint optimization of the vision encoder and clustering heads, unlocking their full potential. Extensive experiments on six mainstream datasets show that our method outperforms existing deep clustering methods by significant margins. Notably, our ViT-B/32 model already matches or even surpasses the accuracy of state-of-the-art methods built upon the far larger ViT-L/14.
Related papers
- Image Clustering Algorithm Based on Self-Supervised Pretrained Models and Latent Feature Distribution Optimization [4.39139858370436]
This paper introduces an image clustering algorithm based on self-supervised pretrained models and latent feature distribution optimization.
Our approach outperforms the latest clustering algorithms and achieves state-of-the-art clustering results.
arXiv Detail & Related papers (2024-08-04T04:08:21Z) - GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Image Clustering via the Principle of Rate Reduction in the Age of Pretrained Models [37.574691902971296]
We propose a novel image clustering pipeline that leverages the powerful feature representation of large pre-trained models.
We show that our pipeline works well on standard datasets such as CIFAR-10, CIFAR-100, and ImageNet-1k.
arXiv Detail & Related papers (2023-06-08T15:20:27Z) - CLUSTSEG: Clustering for Universal Segmentation [56.58677563046506]
CLUSTSEG is a general, transformer-based framework for image segmentation.
It tackles different image segmentation tasks (i.e., superpixel, semantic, instance, and panoptic) through a unified neural clustering scheme.
arXiv Detail & Related papers (2023-05-03T15:31:16Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive deep graph clustering (CDGC) leverages the power of contrastive learning to group nodes into different clusters.
We propose a Graph Node Clustering with Fully Learnable Augmentation, termed GraphLearner.
It introduces learnable augmentors to generate high-quality and task-specific augmented samples for CDGC.
arXiv Detail & Related papers (2022-12-07T10:19:39Z) - Large-Scale Hyperspectral Image Clustering Using Contrastive Learning [18.473767002905433]
We present a scalable deep online clustering model, named Spectral-Spatial Contrastive Clustering (SSCC)
We exploit a symmetric twin neural network comprised of a projection head with a dimensionality of the cluster number to conduct dual contrastive learning from a spectral-spatial augmentation pool.
The resulting approach is trained in an end-to-end fashion by batch-wise optimization, making it robust in large-scale data and resulting in good generalization ability for unseen data.
arXiv Detail & Related papers (2021-11-15T17:50:06Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
We propose a novel method, namely deep attention-guided graph clustering with dual self-supervision (DAGC)
We develop a dual self-supervision solution consisting of a soft self-supervision strategy with a triplet Kullback-Leibler divergence loss and a hard self-supervision strategy with a pseudo supervision loss.
Our method consistently outperforms state-of-the-art methods on six benchmark datasets.
arXiv Detail & Related papers (2021-11-10T06:53:03Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
We propose a novel framework for image clustering that incorporates joint representation learning and clustering.
Our method significantly outperforms state-of-the-art single-stage clustering methods across a variety of image datasets.
arXiv Detail & Related papers (2021-07-24T15:36:49Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
We propose a framework which integrates representation learning and clustering into a single pipeline for the first time.
The proposed framework exploits the powerful ability of recently developed generative models for learning intrinsic features.
Experimental results show that the performance of the proposed method is superior, or at least comparable to, the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-11T04:08:54Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z) - GATCluster: Self-Supervised Gaussian-Attention Network for Image
Clustering [9.722607434532883]
We propose a self-supervised clustering network for image Clustering (GATCluster)
Rather than extracting intermediate features first and then performing the traditional clustering, GATCluster semantic cluster labels without further post-processing.
We develop a two-step learning algorithm that is memory-efficient for clustering large-size images.
arXiv Detail & Related papers (2020-02-27T00:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.