Unifying Mixture of Experts and Multi-Head Latent Attention for Efficient Language Models
- URL: http://arxiv.org/abs/2508.01261v1
- Date: Sat, 02 Aug 2025 08:33:30 GMT
- Title: Unifying Mixture of Experts and Multi-Head Latent Attention for Efficient Language Models
- Authors: Sushant Mehta, Raj Dandekar, Rajat Dandekar, Sreedath Panat,
- Abstract summary: MoE-MLA-RoPE is a novel architecture combination that combines Mixture of Experts (MoE) with Multi-head Latent Attention (MLA) and Rotary Position Embeddings (RoPE) for efficient language modeling.<n>Our approach addresses the fundamental trade-off between model capacity and computational efficiency through three key innovations.
- Score: 1.7272658301768147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present MoE-MLA-RoPE, a novel architecture combination that combines Mixture of Experts (MoE) with Multi-head Latent Attention (MLA) and Rotary Position Embeddings (RoPE) for efficient language modeling. Our approach addresses the fundamental trade-off between model capacity and computational efficiency through three key innovations: (1) fine-grained expert routing with 64 micro-experts and top-$k$ selection, enabling flexible specialization through 3.6 * 10^7 possible expert combinations; (2) shared expert isolation that dedicates 2 always active experts for common patterns while routing to 6 of 62 specialized experts; and (3) gradient-conflict-free load balancing that maintains expert utilization without interfering with primary loss optimization. Extensive experiments on models ranging from 17M to 202M parameters demonstrate that MoE-MLA-RoPE with compression ratio r=d/2 achieves 68% KV cache memory reduction and 3.2x inference speedup while maintaining competitive perplexity (0.8% degradation). Compared to the parameters with 53.9M parameters, MoE-MLA-RoPE improves the validation loss by 6.9% over the vanilla transformers while using 42% fewer active parameters per forward pass. FLOP-matched experiments reveal even larger gains: 11.1% improvement with 3.2x inference acceleration. Automated evaluation using GPT-4 as a judge confirms quality improvements in generation, with higher scores on coherence (8.1/10), creativity (7.9/10) and grammatical correctness (8.2/10). Our results establish that architectural novelty, not parameter scaling, defines the efficiency frontier for resource-constrained language model deployment.
Related papers
- Latent Prototype Routing: Achieving Near-Perfect Load Balancing in Mixture-of-Experts [0.0]
Latent Prototype Routing (LPR) is a novel routing framework that promotes balanced expert utilization without compromising downstream performance.<n>LPR reduces the Gini coefficient of expert load from 0.70 to 0.035 on average, improves the min-max expert load ratio from 1e-6 to 0.70, achieving near-perfect load balancing.
arXiv Detail & Related papers (2025-06-26T14:41:18Z) - LoRA-Mixer: Coordinate Modular LoRA Experts Through Serial Attention Routing [17.171872354057694]
We propose the LoRA-Mixer, a modular and lightweight MoE framework that integrates LoRA experts.<n>Our core innovation lies in replacing the projection matrices of the attention module's input/output linear layers with task-specific LoRA experts.<n>LoRA-Mixer achieves significant improvements on datasets such as GSM8K, HumanEval, and MedQA.
arXiv Detail & Related papers (2025-06-17T14:58:54Z) - EfficientLLM: Efficiency in Large Language Models [64.3537131208038]
Large Language Models (LLMs) have driven significant progress, yet their growing counts and context windows incur prohibitive compute, energy, and monetary costs.<n>We introduce EfficientLLM, a novel benchmark and the first comprehensive empirical study evaluating efficiency techniques for LLMs at scale.
arXiv Detail & Related papers (2025-05-20T02:27:08Z) - DynMoLE: Boosting Mixture of LoRA Experts Fine-Tuning with a Hybrid Routing Mechanism [5.988126768890861]
DynMoLE is a hybrid routing strategy that dynamically adjusts expert selection based on the Tsallis entropy of the router's probability distribution.<n>Our experiments on commonsense reasoning benchmarks demonstrate that DynMoLE achieves substantial performance improvements.
arXiv Detail & Related papers (2025-04-01T11:14:19Z) - Union of Experts: Adapting Hierarchical Routing to Equivalently Decomposed Transformer [5.585222292493927]
We propose Union-of-Experts (UoE), which decomposes transformer into an equitant group of experts, and then implement selective routing on input data and experts.<n>Experiments demonstrate that UoE model surpass Full Attention, state-of-art MoEs and efficient transformers.
arXiv Detail & Related papers (2025-03-04T11:01:25Z) - Mixture Compressor for Mixture-of-Experts LLMs Gains More [71.0473038084673]
We propose a training-free Mixture-Compressor for Mixture-of-Experts large language models (MoE-LLMs)<n>Our MC integrates static quantization and dynamic pruning to collaboratively achieve extreme compression for MoE-LLMs with less accuracy loss.<n>For instance, at 2.54 bits, MC compresses 76.6% of the model, with only a 3.8% average accuracy loss.
arXiv Detail & Related papers (2024-10-08T18:09:38Z) - MoMa: Efficient Early-Fusion Pre-training with Mixture of Modality-Aware Experts [95.26323548734692]
MoMa is a modality-aware mixture-of-experts architecture for pre-training mixed-modal, early-fusion language models.
Under a 1-trillion-token training budget, the MoMa 1.4B model, featuring 4 text experts and 4 image experts, achieves impressive FLOPs savings.
arXiv Detail & Related papers (2024-07-31T17:46:51Z) - Expert-Token Resonance MoE: Bidirectional Routing with Efficiency Affinity-Driven Active Selection [16.062265609569003]
Mixture-of-Experts (MoE) architectures have emerged as a paradigm-shifting approach for large language models (LLMs)<n>We propose a novel expert routing framework that incorporates: (1) An efficient routing mechanism with lightweight computation; (2) An adaptive bidirectional selection mechanism leveraging resonance between experts and tokens; and (3) A module that determines the lower bounds of expert capacity based on dynamic token distribution analysis.
arXiv Detail & Related papers (2024-05-24T02:50:44Z) - Alexa Teacher Model: Pretraining and Distilling Multi-Billion-Parameter
Encoders for Natural Language Understanding Systems [63.713297451300086]
We present results from a large-scale experiment on pretraining encoders with non-embedding parameter counts ranging from 700M to 9.3B.
Their subsequent distillation into smaller models ranging from 17M-170M parameters, and their application to the Natural Language Understanding (NLU) component of a virtual assistant system.
arXiv Detail & Related papers (2022-06-15T20:44:23Z) - ERNIE-SPARSE: Learning Hierarchical Efficient Transformer Through
Regularized Self-Attention [48.697458429460184]
Two factors, information bottleneck sensitivity and inconsistency between different attention topologies, could affect the performance of the Sparse Transformer.
This paper proposes a well-designed model named ERNIE-Sparse.
It consists of two distinctive parts: (i) Hierarchical Sparse Transformer (HST) to sequentially unify local and global information, and (ii) Self-Attention Regularization (SAR) to minimize the distance for transformers with different attention topologies.
arXiv Detail & Related papers (2022-03-23T08:47:01Z) - Towards a Competitive End-to-End Speech Recognition for CHiME-6 Dinner
Party Transcription [73.66530509749305]
In this paper, we argue that, even in difficult cases, some end-to-end approaches show performance close to the hybrid baseline.
We experimentally compare and analyze CTC-Attention versus RNN-Transducer approaches along with RNN versus Transformer architectures.
Our best end-to-end model based on RNN-Transducer, together with improved beam search, reaches quality by only 3.8% WER abs. worse than the LF-MMI TDNN-F CHiME-6 Challenge baseline.
arXiv Detail & Related papers (2020-04-22T19:08:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.