SWAN: Synergistic Wavelet-Attention Network for Infrared Small Target Detection
- URL: http://arxiv.org/abs/2508.01322v1
- Date: Sat, 02 Aug 2025 11:26:58 GMT
- Title: SWAN: Synergistic Wavelet-Attention Network for Infrared Small Target Detection
- Authors: Yuxin Jing, Jufeng Zhao, Tianpei Zhang, Yiming Zhu,
- Abstract summary: Infrared small target detection (IRSTD) is critical in both civilian and military applications.<n>Recent methods focus on conventional convolution operations, which primarily capture local spatial patterns.<n>We propose the Synergistic Wavelet-Attention Network (SWAN), a novel framework designed to perceive targets from both spatial and frequency domains.
- Score: 8.098063209250684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infrared small target detection (IRSTD) is thus critical in both civilian and military applications. This study addresses the challenge of precisely IRSTD in complex backgrounds. Recent methods focus fundamental reliance on conventional convolution operations, which primarily capture local spatial patterns and struggle to distinguish the unique frequency-domain characteristics of small targets from intricate background clutter. To overcome these limitations, we proposed the Synergistic Wavelet-Attention Network (SWAN), a novel framework designed to perceive targets from both spatial and frequency domains. SWAN leverages a Haar Wavelet Convolution (HWConv) for a deep, cross-domain fusion of the frequency energy and spatial details of small target. Furthermore, a Shifted Spatial Attention (SSA) mechanism efficiently models long-range spatial dependencies with linear computational complexity, enhancing contextual awareness. Finally, a Residual Dual-Channel Attention (RDCA) module adaptively calibrates channel-wise feature responses to suppress background interference while amplifying target-pertinent signals. Extensive experiments on benchmark datasets demonstrate that SWAN surpasses existing state-of-the-art methods, showing significant improvements in detection accuracy and robustness, particularly in complex challenging scenarios.
Related papers
- Wavelet-Guided Dual-Frequency Encoding for Remote Sensing Change Detection [67.84730634802204]
Change detection in remote sensing imagery plays a vital role in various engineering applications, such as natural disaster monitoring, urban expansion tracking, and infrastructure management.<n>Most existing methods still rely on spatial-domain modeling, where the limited diversity of feature representations hinders the detection of subtle change regions.<n>We observe that frequency-domain feature modeling particularly in the wavelet domain amplify fine-grained differences in frequency components, enhancing the perception of edge changes that are challenging to capture in the spatial domain.
arXiv Detail & Related papers (2025-08-07T11:14:16Z) - FADPNet: Frequency-Aware Dual-Path Network for Face Super-Resolution [70.61549422952193]
Face super-resolution (FSR) under limited computational costs remains an open problem.<n>Existing approaches typically treat all facial pixels equally, resulting in suboptimal allocation of computational resources.<n>We propose FADPNet, a Frequency-Aware Dual-Path Network that decomposes facial features into low- and high-frequency components.
arXiv Detail & Related papers (2025-06-17T02:33:42Z) - ARFC-WAHNet: Adaptive Receptive Field Convolution and Wavelet-Attentive Hierarchical Network for Infrared Small Target Detection [2.643590634429843]
ARFC-WAHNet is an adaptive receptive field convolution and wavelet-attentive hierarchical network for infrared small target detection.<n>ARFC-WAHNet outperforms recent state-of-the-art methods in both detection accuracy and robustness.
arXiv Detail & Related papers (2025-05-15T09:44:23Z) - Single-Point Supervised High-Resolution Dynamic Network for Infrared Small Target Detection [7.0456782736205685]
We propose a single-point supervised high-resolution dynamic network (SSHD-Net)
It achieves state-of-the-art (SOTA) detection performance using only single-point supervision.
Experiments on the publicly available datasets NUDT-SIRST and IRSTD-1k demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-08-04T09:44:47Z) - UDHF2-Net: Uncertainty-diffusion-model-based High-Frequency TransFormer Network for Remotely Sensed Imagery Interpretation [17.289252835606533]
Uncertainty-diffusion-model-based high-Frequency TransFormer network (UDHF2-Net) is the first to be proposed.<n> UDHF2-Net is a spatially-stationary-and-non-stationary high-frequency connection paradigm (SHCP)<n>Mask-and-geo-knowledge-based uncertainty diffusion module (MUDM) is a self-supervised learning strategy.<n>A frequency-wise semi-pseudo-Siamese UDHF2-Net is the first to be proposed to balance accuracy and complexity for change detection.
arXiv Detail & Related papers (2024-06-23T15:03:35Z) - DenoDet: Attention as Deformable Multi-Subspace Feature Denoising for Target Detection in SAR Images [20.11145540094807]
We propose a network aided by explicit frequency domain transform to calibrate convolutional biases and pay more attention to high-frequencies.
We design TransDeno, a dynamic frequency domain attention module that performs as a transform domain soft thresholding operation.
Our plug-and-play TransDeno sets state-of-the-art scores on multiple SAR target detection datasets.
arXiv Detail & Related papers (2024-06-05T01:05:26Z) - SCTransNet: Spatial-channel Cross Transformer Network for Infrared Small Target Detection [46.049401912285134]
Infrared small target detection (IRSTD) has recently benefitted greatly from U-shaped neural models.
Existing techniques struggle when the target has high similarities with the background.
We present a Spatial-channel Cross Transformer Network (SCTransNet) that leverages spatial-channel cross transformer blocks.
arXiv Detail & Related papers (2024-01-28T06:41:15Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
We propose a novel learnable and separable frequency perception mechanism driven by the semantic hierarchy in the frequency domain.<n>Our entire network adopts a two-stage model, including a frequency-guided coarse localization stage and a detail-preserving fine localization stage.<n>Compared with the currently existing models, our proposed method achieves competitive performance in three popular benchmark datasets.
arXiv Detail & Related papers (2023-08-17T11:30:46Z) - Hyperspectral Image Super-Resolution via Dual-domain Network Based on
Hybrid Convolution [6.3814314790000415]
This paper proposes a novel HSI super-resolution algorithm, termed dual-domain network based on hybrid convolution (SRDNet)
To capture inter-spectral self-similarity, a self-attention learning mechanism (HSL) is devised in the spatial domain.
To further improve the perceptual quality of HSI, a frequency loss(HFL) is introduced to optimize the model in the frequency domain.
arXiv Detail & Related papers (2023-04-10T13:51:28Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.