ForenX: Towards Explainable AI-Generated Image Detection with Multimodal Large Language Models
- URL: http://arxiv.org/abs/2508.01402v1
- Date: Sat, 02 Aug 2025 15:21:26 GMT
- Title: ForenX: Towards Explainable AI-Generated Image Detection with Multimodal Large Language Models
- Authors: Chuangchuang Tan, Jinglu Wang, Xiang Ming, Renshuai Tao, Yunchao Wei, Yao Zhao, Yan Lu,
- Abstract summary: We present ForenX, a novel method that not only identifies the authenticity of images but also provides explanations that resonate with human thoughts.<n>ForenX employs the powerful multimodal large language models (MLLMs) to analyze and interpret forensic cues.<n>We introduce ForgReason, a dataset dedicated to descriptions of forgery evidences in AI-generated images.
- Score: 82.04858317800097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in generative models have led to AI-generated images visually indistinguishable from authentic ones. Despite numerous studies on detecting AI-generated images with classifiers, a gap persists between such methods and human cognitive forensic analysis. We present ForenX, a novel method that not only identifies the authenticity of images but also provides explanations that resonate with human thoughts. ForenX employs the powerful multimodal large language models (MLLMs) to analyze and interpret forensic cues. Furthermore, we overcome the limitations of standard MLLMs in detecting forgeries by incorporating a specialized forensic prompt that directs the MLLMs attention to forgery-indicative attributes. This approach not only enhance the generalization of forgery detection but also empowers the MLLMs to provide explanations that are accurate, relevant, and comprehensive. Additionally, we introduce ForgReason, a dataset dedicated to descriptions of forgery evidences in AI-generated images. Curated through collaboration between an LLM-based agent and a team of human annotators, this process provides refined data that further enhances our model's performance. We demonstrate that even limited manual annotations significantly improve explanation quality. We evaluate the effectiveness of ForenX on two major benchmarks. The model's explainability is verified by comprehensive subjective evaluations.
Related papers
- AIGI-Holmes: Towards Explainable and Generalizable AI-Generated Image Detection via Multimodal Large Language Models [78.08374249341514]
The rapid development of AI-generated content (AIGC) has led to the misuse of AI-generated images (AIGI) in spreading misinformation.<n>We introduce a large-scale and comprehensive dataset, Holmes-Set, which includes an instruction-tuning dataset with explanations on whether images are AI-generated.<n>Our work introduces an efficient data annotation method called the Multi-Expert Jury, enhancing data generation through structured MLLM explanations and quality control.<n>In addition, we propose Holmes Pipeline, a meticulously designed three-stage training framework comprising visual expert pre-training, supervised fine-tuning, and direct preference optimization
arXiv Detail & Related papers (2025-07-03T14:26:31Z) - Interpretable and Reliable Detection of AI-Generated Images via Grounded Reasoning in MLLMs [43.08776932101172]
We build a dataset of AI-generated images annotated with bounding boxes and descriptive captions.<n>We then finetune MLLMs through a multi-stage optimization strategy.<n>The resulting model achieves superior performance in both detecting AI-generated images and localizing visual flaws.
arXiv Detail & Related papers (2025-06-08T08:47:44Z) - FakeScope: Large Multimodal Expert Model for Transparent AI-Generated Image Forensics [66.14786900470158]
We propose FakeScope, an expert multimodal model (LMM) tailored for AI-generated image forensics.<n>FakeScope identifies AI-synthetic images with high accuracy and provides rich, interpretable, and query-driven forensic insights.<n>FakeScope achieves state-of-the-art performance in both closed-ended and open-ended forensic scenarios.
arXiv Detail & Related papers (2025-03-31T16:12:48Z) - FakeReasoning: Towards Generalizable Forgery Detection and Reasoning [24.8865218866598]
We propose modeling AI-generated image detection and explanation as a Forgery Detection and Reasoning task (FDR-Task)<n>We introduce the Multi-Modal Forgery Reasoning dataset (MMFR-Dataset), a large-scale dataset containing 100K images across 10 generative models.<n>We also propose FakeReasoning, a forgery detection and reasoning framework with two key components.
arXiv Detail & Related papers (2025-03-27T06:54:06Z) - VLForgery Face Triad: Detection, Localization and Attribution via Multimodal Large Language Models [14.053424085561296]
Face models with high-quality and controllable attributes pose a significant challenge for Deepfake detection.<n>In this work, we integrate Multimodal Large Language Models (MLLMs) within DM-based face forensics.<n>We propose a fine-grained analysis triad framework called VLForgery, that can 1) predict falsified facial images; 2) locate the falsified face regions subjected to partial synthesis; and 3) attribute the synthesis with specific generators.
arXiv Detail & Related papers (2025-03-08T09:55:19Z) - Towards General Visual-Linguistic Face Forgery Detection(V2) [90.6600794602029]
Face manipulation techniques have achieved significant advances, presenting serious challenges to security and social trust.<n>Recent works demonstrate that leveraging multimodal models can enhance the generalization and interpretability of face forgery detection.<n>We propose Face Forgery Text Generator (FFTG), a novel annotation pipeline that generates accurate text descriptions by leveraging forgery masks for initial region and type identification.
arXiv Detail & Related papers (2025-02-28T04:15:36Z) - Scaling Large Vision-Language Models for Enhanced Multimodal Comprehension In Biomedical Image Analysis [0.1984949535188529]
Vision language models (VLMs) address this by incorporating a pretrained vision backbone for processing images and a cross-modal projector.<n>We developed intelligent assistants finetuned from LLaVA models to enhance multimodal understanding in low-dose radiation therapy.
arXiv Detail & Related papers (2025-01-26T02:48:01Z) - MRGen: Segmentation Data Engine for Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically important imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize data, for training segmentation models for underrepresented modalities.<n>We present MRGen, a data engine for controllable medical image synthesis conditioned on text prompts and segmentation masks.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - ForgeryGPT: Multimodal Large Language Model For Explainable Image Forgery Detection and Localization [49.12958154544838]
ForgeryGPT is a novel framework that advances the Image Forgery Detection and localization task.<n>It captures high-order correlations of forged images from diverse linguistic feature spaces.<n>It enables explainable generation and interactive dialogue through a newly customized Large Language Model (LLM) architecture.
arXiv Detail & Related papers (2024-10-14T07:56:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.