MOPrompt: Multi-objective Semantic Evolution for Prompt Optimization
- URL: http://arxiv.org/abs/2508.01541v1
- Date: Sun, 03 Aug 2025 01:50:43 GMT
- Title: MOPrompt: Multi-objective Semantic Evolution for Prompt Optimization
- Authors: Sara Câmara, Eduardo Luz, Valéria Carvalho, Ivan Meneghini, Gladston Moreira,
- Abstract summary: MOPrompt is a novel framework designed to optimize prompts for both accuracy and context size (measured in tokens) simultaneously.<n>We evaluate MOPrompt on a sentiment analysis task in Portuguese, using Gemma-2B and Sabiazinho-3 as evaluation models.
- Score: 0.0699049312989311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt engineering is crucial for unlocking the potential of Large Language Models (LLMs). Still, since manual prompt design is often complex, non-intuitive, and time-consuming, automatic prompt optimization has emerged as a research area. However, a significant challenge in prompt optimization is managing the inherent trade-off between task performance, such as accuracy, and context size. Most existing automated methods focus on a single objective, typically performance, thereby failing to explore the critical spectrum of efficiency and effectiveness. This paper introduces the MOPrompt, a novel Multi-objective Evolutionary Optimization (EMO) framework designed to optimize prompts for both accuracy and context size (measured in tokens) simultaneously. Our framework maps the Pareto front of prompt solutions, presenting practitioners with a set of trade-offs between context size and performance, a crucial tool for deploying Large Language Models (LLMs) in real-world applications. We evaluate MOPrompt on a sentiment analysis task in Portuguese, using Gemma-2B and Sabiazinho-3 as evaluation models. Our findings show that MOPrompt substantially outperforms the baseline framework. For the Sabiazinho model, MOPrompt identifies a prompt that achieves the same peak accuracy (0.97) as the best baseline solution, but with a 31% reduction in token length.
Related papers
- LatentPrompt: Optimizing Promts in Latent Space [20.80689930065897]
We present LatentPrompt, a model-agnostic framework for prompt optimization.<n>Our method embeds seed prompts in a continuous latent space and systematically explores this space to identify prompts that maximize task-specific performance.<n>In a proof-of-concept study on the Financial PhraseBank sentiment classification benchmark, LatentPrompt increased classification accuracy by approximately 3 percent after a single optimization cycle.
arXiv Detail & Related papers (2025-08-04T14:17:29Z) - Grammar-Guided Evolutionary Search for Discrete Prompt Optimisation [63.97051732013936]
We propose an evolutionary search approach to automated discrete prompt optimisation consisting of two phases.<n>In the first phase, grammar-guided genetic programming is invoked to synthesise prompt-creating programmes.<n>In the second phase, local search is applied to explore the neighbourhoods of best-performing programmes.
arXiv Detail & Related papers (2025-07-14T14:34:15Z) - MEMETRON: Metaheuristic Mechanisms for Test-time Response Optimization of Large Language Models [0.6926105253992517]
Large language models (LLMs) are increasingly used for both open-ended and structured tasks.<n>We introduce MEMETRON, a task-agnostic framework that formulates LLM decoding as a discrete black-box optimization problem.<n>We evaluate our framework on the critical human preference alignment task and demonstrate that it significantly outperforms standard decoding and reranking methods.
arXiv Detail & Related papers (2025-06-10T09:55:53Z) - Tournament of Prompts: Evolving LLM Instructions Through Structured Debates and Elo Ratings [0.9437165725355702]
We introduce DEEVO, a novel framework that guides prompt evolution through a debate-driven evaluation with an Elo-based selection.<n>Using Elo ratings as a fitness proxy, DEEVO simultaneously drives improvement and preserves valuable diversity in the prompt population.
arXiv Detail & Related papers (2025-05-30T19:33:41Z) - Acting Less is Reasoning More! Teaching Model to Act Efficiently [87.28134636548705]
Tool-integrated reasoning augments large language models with the ability to invoke external tools to solve tasks.<n>Current approaches typically optimize only for final correctness without considering the efficiency or necessity of external tool use.<n>We propose a framework that encourages models to produce accurate answers with minimal tool calls.<n>Our approach reduces tool calls by up to 68.3% and improves tool productivity by up to 215.4%, while maintaining comparable answer accuracy.
arXiv Detail & Related papers (2025-04-21T05:40:05Z) - EfficientLLaVA:Generalizable Auto-Pruning for Large Vision-language Models [64.18350535770357]
We propose an automatic pruning method for large vision-language models to enhance the efficiency of multimodal reasoning.<n>Our approach only leverages a small number of samples to search for the desired pruning policy.<n>We conduct extensive experiments on the ScienceQA, Vizwiz, MM-vet, and LLaVA-Bench datasets for the task of visual question answering.
arXiv Detail & Related papers (2025-03-19T16:07:04Z) - A Sequential Optimal Learning Approach to Automated Prompt Engineering in Large Language Models [14.483240353801074]
This paper proposes an optimal learning framework for automated prompt engineering.<n>It is designed to sequentially identify effective prompt features while efficiently allocating a limited evaluation budget.<n>Our framework provides a solution to deploying automated prompt engineering in a wider range applications.
arXiv Detail & Related papers (2025-01-07T03:51:10Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.<n>EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.<n>We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.<n> Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - T-REX: Mixture-of-Rank-One-Experts with Semantic-aware Intuition for Multi-task Large Language Model Finetuning [31.276142111455847]
Large language models (LLMs) encounter significant adaptation challenges in diverse multitask finetuning.<n>We design a novel framework, mixunderlinetextbfTureunderlinetextbf-of-underlinetextbfRank-onunderlinetextbfE-eunderlinetextbfXper ts (textttT-REX)<n>Rank-1 experts enable a mix-and-match mechanism to quadratically expand the vector subspace of experts with linear parameter overheads, achieving approximate error reduction with optimal
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.