Deeply Supervised Multi-Task Autoencoder for Biological Brain Age estimation using three dimensional T$_1$-weighted magnetic resonance imaging
- URL: http://arxiv.org/abs/2508.01565v1
- Date: Sun, 03 Aug 2025 03:24:02 GMT
- Title: Deeply Supervised Multi-Task Autoencoder for Biological Brain Age estimation using three dimensional T$_1$-weighted magnetic resonance imaging
- Authors: Mehreen Kanwal, Yunsik Son,
- Abstract summary: We propose a Deeply Supervised Multitask Autoencoder (DSMT-AE) framework for brain age estimation.<n>DSMT-AE employs deep supervision, which involves applying supervisory signals at intermediate layers during training.<n>We extensively evaluate DSMT-AE on the Open Brain Health Benchmark dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate estimation of biological brain age from three dimensional (3D) T$_1$-weighted magnetic resonance imaging (MRI) is a critical imaging biomarker for identifying accelerated aging associated with neurodegenerative diseases. Effective brain age prediction necessitates training 3D models to leverage comprehensive insights from volumetric MRI scans, thereby fully capturing spatial anatomical context. However, optimizing deep 3D models remains challenging due to problems such as vanishing gradients. Furthermore, brain structural patterns differ significantly between sexes, which impacts aging trajectories and vulnerability to neurodegenerative diseases, thereby making sex classification crucial for enhancing the accuracy and generalizability of predictive models. To address these challenges, we propose a Deeply Supervised Multitask Autoencoder (DSMT-AE) framework for brain age estimation. DSMT-AE employs deep supervision, which involves applying supervisory signals at intermediate layers during training, to stabilize model optimization, and multitask learning to enhance feature representation. Specifically, our framework simultaneously optimizes brain age prediction alongside auxiliary tasks of sex classification and image reconstruction, thus effectively capturing anatomical and demographic variability to improve prediction accuracy. We extensively evaluate DSMT-AE on the Open Brain Health Benchmark (OpenBHB) dataset, the largest multisite neuroimaging cohort combining ten publicly available datasets. The results demonstrate that DSMT-AE achieves state-of-the-art performance and robustness across age and sex subgroups. Additionally, our ablation study confirms that each proposed component substantially contributes to the improved predictive accuracy and robustness of the overall architecture.
Related papers
- Conditional Fetal Brain Atlas Learning for Automatic Tissue Segmentation [0.8326370619658685]
We introduce a novel deep-learning framework for generating continuous, age-specific fetal brain atlases.<n>The framework combines a direct registration model with a conditional discriminator.<n>It was trained on a curated dataset of 219 neurotypical fetal MRIs spanning from 21 to 37 weeks of gestation.
arXiv Detail & Related papers (2025-08-06T15:07:39Z) - Biological Brain Age Estimation using Sex-Aware Adversarial Variational Autoencoder with Multimodal Neuroimages [8.610253537046692]
We propose a novel framework for brain age estimation utilizing a sex-aware adversarial variational autoencoder (SA-AVAE)<n>We decompose the latent space into modality-specific codes and shared codes to represent complementary and common information across modalities.<n>We incorporate sex information into the learned latent code, enabling the model to capture sex-specific aging patterns for brain age estimation.
arXiv Detail & Related papers (2024-12-07T12:10:29Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Dual Graph Attention based Disentanglement Multiple Instance Learning for Brain Age Estimation [24.548441213107566]
We propose a Dual Graph Attention based Disentanglement Multi-instance Learning (DGA-DMIL) framework for improving brain age estimation.
A dual graph attention aggregator is then proposed to learn the backbone features by exploiting the intra- and inter-instance relationships.
Our proposed model demonstrates exceptional accuracy in estimating brain age, achieving a remarkable mean absolute error of 2.12 years in the UK Biobank.
arXiv Detail & Related papers (2024-03-02T16:13:06Z) - Triamese-ViT: A 3D-Aware Method for Robust Brain Age Estimation from
MRIs [0.7770029179741429]
This paper introduces Triamese-ViT, an innovative adaptation of the ViT model for brain age estimation.
Tested on a dataset of 1351 MRI scans, Triamese-ViT achieves a Mean Absolute Error (MAE) of 3.84, a 0.9 Spearman correlation coefficient with chronological age, and a -0.29 Spearman coefficient correlation between the brain age gap and chronological age.
arXiv Detail & Related papers (2024-01-13T03:29:56Z) - Robust Brain Age Estimation via Regression Models and MRI-derived
Features [2.028990630951476]
We present a novel brain age estimation framework using the Open Big Healthy Brain (OpenBHB) dataset.
Our approach integrates three different MRI-derived region-wise features and different regression models, resulting in a highly accurate brain age estimation.
arXiv Detail & Related papers (2023-06-08T19:07:22Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
Unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results.
We propose deep learning for UAD in 3D brain MRI considering additional age information.
Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction.
arXiv Detail & Related papers (2022-01-31T09:39:52Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
We focus on the task of brain age regression from 3D brain Magnetic Resonance (MR) images using a Convolutional Neural Network, termed prediction model.
We implement a noise model which aims to add as much noise as possible to the input without harming the performance of the prediction model.
We test our method on 13,750 3D brain MR images from the UK Biobank, and our findings are consistent with the existing neuropathology literature.
arXiv Detail & Related papers (2021-08-11T18:08:09Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.