TCDiff: Triplex Cascaded Diffusion for High-fidelity Multimodal EHRs Generation with Incomplete Clinical Data
- URL: http://arxiv.org/abs/2508.01615v1
- Date: Sun, 03 Aug 2025 06:24:20 GMT
- Title: TCDiff: Triplex Cascaded Diffusion for High-fidelity Multimodal EHRs Generation with Incomplete Clinical Data
- Authors: Yandong Yan, Chenxi Li, Yu Huang, Dexuan Xu, Jiaqi Zhu, Zhongyan Chai, Huamin Zhang,
- Abstract summary: We propose TCDiff, a novel EHR generation framework that cascades three diffusion networks to learn the features of real-world EHR data.<n> TCDiff consistently outperforms state-of-the-art baselines by an average of 10% in data fidelity under various missing rate.<n>This highlights the effectiveness, robustness, and generalizability of our approach in real-world healthcare scenarios.
- Score: 7.661128607911307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scarcity of large-scale and high-quality electronic health records (EHRs) remains a major bottleneck in biomedical research, especially as large foundation models become increasingly data-hungry. Synthesizing substantial volumes of de-identified and high-fidelity data from existing datasets has emerged as a promising solution. However, existing methods suffer from a series of limitations: they struggle to model the intrinsic properties of heterogeneous multimodal EHR data (e.g., continuous, discrete, and textual modalities), capture the complex dependencies among them, and robustly handle pervasive data incompleteness. These challenges are particularly acute in Traditional Chinese Medicine (TCM). To this end, we propose TCDiff (Triplex Cascaded Diffusion Network), a novel EHR generation framework that cascades three diffusion networks to learn the features of real-world EHR data, formatting a multi-stage generative process: Reference Modalities Diffusion, Cross-Modal Bridging, and Target Modality Diffusion. Furthermore, to validate our proposed framework, besides two public datasets, we also construct and introduce TCM-SZ1, a novel multimodal EHR dataset for benchmarking. Experimental results show that TCDiff consistently outperforms state-of-the-art baselines by an average of 10% in data fidelity under various missing rate, while maintaining competitive privacy guarantees. This highlights the effectiveness, robustness, and generalizability of our approach in real-world healthcare scenarios.
Related papers
- Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - Multi-Modal Dataset Distillation in the Wild [75.64263877043615]
We propose Multi-modal dataset Distillation in the Wild, i.e., MDW, to distill noisy multi-modal datasets into compact clean ones for effective and efficient model training.<n>Specifically, MDW introduces learnable fine-grained correspondences during distillation and adaptively optimize distilled data to emphasize correspondence-discriminative regions.<n>Extensive experiments validate MDW's theoretical and empirical efficacy with remarkable scalability, surpassing prior methods by over 15% across various compression ratios.
arXiv Detail & Related papers (2025-06-02T12:18:20Z) - mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data [71.352883755806]
Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space.<n>However, the limited labeled multimodal data often hinders embedding performance.<n>Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck.
arXiv Detail & Related papers (2025-02-12T15:03:33Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.<n>Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.<n>Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.<n>Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - ITCFN: Incomplete Triple-Modal Co-Attention Fusion Network for Mild Cognitive Impairment Conversion Prediction [12.893857146169045]
Alzheimer's disease (AD) is a common neurodegenerative disease among the elderly.<n>Early prediction and timely intervention of its prodromal stage, mild cognitive impairment (MCI), can decrease the risk of advancing to AD.
arXiv Detail & Related papers (2025-01-20T05:12:31Z) - FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment.
Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality.
This paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD.
arXiv Detail & Related papers (2024-10-28T02:24:01Z) - Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
Development of a robust deep-learning model for retinal disease diagnosis requires a substantial dataset for training.
The capacity to generalize effectively on smaller datasets remains a persistent challenge.
We've combined a wide range of data sources to improve performance and generalization to new data.
arXiv Detail & Related papers (2024-09-17T17:22:35Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Multi-Modal Federated Learning for Cancer Staging over Non-IID Datasets with Unbalanced Modalities [9.476402318365446]
In this work, we introduce a novel FL architecture designed to accommodate not only the heterogeneity of data samples, but also the inherent heterogeneity/non-uniformity of data modalities across institutions.
We propose a solution by devising a distributed gradient blending and proximity-aware client weighting strategy tailored for multi-modal FL.
arXiv Detail & Related papers (2024-01-07T23:45:01Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
This paper presents the Hybrid Early-fusion Attention Learning Network (HEALNet), a flexible multimodal fusion architecture.
We conduct multimodal survival analysis on Whole Slide Images and Multi-omic data on four cancer datasets from The Cancer Genome Atlas (TCGA)
HEALNet achieves state-of-the-art performance compared to other end-to-end trained fusion models.
arXiv Detail & Related papers (2023-11-15T17:06:26Z) - Synthesizing Mixed-type Electronic Health Records using Diffusion Models [10.973115905786129]
Synthetic data generation is a promising solution to mitigate privacy concerns when sharing sensitive patient information.
Recent studies have shown that diffusion models offer several advantages over GANs, such as generation of more realistic synthetic data and stable training in generating data modalities, including image, text, and sound.
Our experiments demonstrate that TabDDPM outperforms the state-of-the-art models across all evaluation metrics, except for privacy, which confirms the trade-off between privacy and utility.
arXiv Detail & Related papers (2023-02-28T15:42:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.