EAC-MoE: Expert-Selection Aware Compressor for Mixture-of-Experts Large Language Models
- URL: http://arxiv.org/abs/2508.01625v1
- Date: Sun, 03 Aug 2025 07:30:42 GMT
- Title: EAC-MoE: Expert-Selection Aware Compressor for Mixture-of-Experts Large Language Models
- Authors: Yuanteng Chen, Yuantian Shao, Peisong Wang, Jian Cheng,
- Abstract summary: Mixture-of-Experts (MoE) has demonstrated promising potential in scaling LLMs.<n>It is hindered by two critical challenges: (1) substantial memory consumption to load all experts; and (2) low activated parameters cannot be equivalently translated into inference acceleration effects.<n>We propose an Expert-Selection Aware for MoE-LLMs, which deeply aligns with the characteristics of MoE from the perspectives of quantization and pruning.
- Score: 18.870990552728948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixture-of-Experts (MoE) has demonstrated promising potential in scaling LLMs. However, it is hindered by two critical challenges: (1) substantial GPU memory consumption to load all experts; (2) low activated parameters cannot be equivalently translated into inference acceleration effects. In this work, we propose EAC-MoE, an Expert-Selection Aware Compressor for MoE-LLMs, which deeply aligns with the characteristics of MoE from the perspectives of quantization and pruning, and introduces two modules to address these two challenges respectively: (1) The expert selection bias caused by low-bit quantization is a major factor contributing to the performance degradation in MoE-LLMs. Based on this, we propose Quantization with Expert-Selection Calibration (QESC), which mitigates the expert selection bias by calibrating the routers within the MoE; (2) There are always certain experts that are not crucial for the corresponding tasks, yet causing inference latency. Therefore, we propose Pruning based on Expert-Selection Frequency (PESF), which significantly improves inference speed by pruning less frequently used experts for current task. Extensive experiments demonstrate that our approach significantly reduces memory usage and improves inference speed with minimal performance degradation.
Related papers
- MoA: Heterogeneous Mixture of Adapters for Parameter-Efficient Fine-Tuning of Large Language Models [61.89384981175277]
We propose a emphheterogeneous textbfMixture-of-Adapters (MoA) approach to integrate Low-Rank Adaptation (LoRA) and Mixture-of-Experts (MoE)<n> Experimental results demonstrate that heterogeneous MoA outperforms homogeneous MoE-LoRA methods in both performance and parameter efficiency.
arXiv Detail & Related papers (2025-06-06T09:54:19Z) - MoEQuant: Enhancing Quantization for Mixture-of-Experts Large Language Models via Expert-Balanced Sampling and Affinity Guidance [10.817003682434425]
Mixture-of-Experts (MoE) large language models (LLMs) leverage dynamic routing and sparse activation to enhance efficiency and scalability.<n>Post-training quantization (PTQ) encounters severe accuracy degradation and diminished performance when applied to MoE models.<n>This paper investigates the impact of MoE's sparse and dynamic characteristics on quantization.
arXiv Detail & Related papers (2025-05-02T08:51:55Z) - Finding Fantastic Experts in MoEs: A Unified Study for Expert Dropping Strategies and Observations [86.90549830760513]
Sparsely activated Mixture-of-Experts (SMoE) has shown promise in scaling up the learning capacity of neural networks.<n>We propose MoE Experts Compression Suite (MC-Suite) to provide a benchmark for estimating expert importance from diverse perspectives.<n>We present an experimentally validated conjecture that, during expert dropping, SMoEs' instruction-following capabilities are predominantly hurt.
arXiv Detail & Related papers (2025-04-08T00:49:08Z) - HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference [54.40808356999408]
We present HOBBIT, a mixed precision expert offloading system to enable flexible and efficient MoE inference.
Our key insight is that dynamically replacing less critical cache-miss experts with low precision versions can substantially reduce expert-loading latency.
HOBBIT achieves up to a 9.93x speedup in decoding compared to state-of-the-art MoE offloading systems.
arXiv Detail & Related papers (2024-11-03T04:25:46Z) - Mixture Compressor for Mixture-of-Experts LLMs Gains More [71.0473038084673]
We propose a training-free Mixture-Compressor for Mixture-of-Experts large language models (MoE-LLMs)<n>Our MC integrates static quantization and dynamic pruning to collaboratively achieve extreme compression for MoE-LLMs with less accuracy loss.<n>For instance, at 2.54 bits, MC compresses 76.6% of the model, with only a 3.8% average accuracy loss.
arXiv Detail & Related papers (2024-10-08T18:09:38Z) - AdapMoE: Adaptive Sensitivity-based Expert Gating and Management for Efficient MoE Inference [13.263938935671646]
AdapMoE is an algorithm-system co-design framework for efficient MoE inference.
AdapMoE features adaptive expert gating and management to reduce the on-demand loading overheads.
We show AdapMoE consistently outperforms existing techniques, reducing the average number of activated experts by 25% and achieving a 1.35x speedup without degradation accuracy.
arXiv Detail & Related papers (2024-08-19T03:27:15Z) - SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts [49.01990048827639]
We introduce SEER-MoE, a framework for reducing both the memory footprint and compute requirements of pre-trained MoE models.
The first stage involves pruning the total number of experts using a heavy-hitters counting guidance, while the second stage employs a regularization-based fine-tuning strategy to recover accuracy loss.
Our empirical studies demonstrate the effectiveness of our method, resulting in a sparse MoEs model optimized for inference efficiency with minimal accuracy trade-offs.
arXiv Detail & Related papers (2024-04-07T22:13:43Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead.
MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated.
However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation.
arXiv Detail & Related papers (2022-07-19T06:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.