Boosting Generalization Performance in Model-Heterogeneous Federated Learning Using Variational Transposed Convolution
- URL: http://arxiv.org/abs/2508.01669v1
- Date: Sun, 03 Aug 2025 08:55:18 GMT
- Title: Boosting Generalization Performance in Model-Heterogeneous Federated Learning Using Variational Transposed Convolution
- Authors: Ziru Niu, Hai Dong, A. K. Qin,
- Abstract summary: Federated learning (FL) is a pioneering machine learning paradigm that enables distributed clients to process local data effectively.<n>Traditional model-homogeneous approaches mainly involve debiasing the local training procedures with regularization or dynamically adjusting client weights in aggregation.<n>We propose a model-heterogeneous FL framework that can improve clients' generalization performance over unseen data without model aggregation.
- Score: 0.27309692684728615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is a pioneering machine learning paradigm that enables distributed clients to process local data effectively while ensuring data privacy. However, the efficacy of FL is usually impeded by the data heterogeneity among clients, resulting in local models with low generalization performance. To address this problem, traditional model-homogeneous approaches mainly involve debiasing the local training procedures with regularization or dynamically adjusting client weights in aggregation. Nonetheless, these approaches become incompatible for scenarios where clients exhibit heterogeneous model architectures. In this paper, we propose a model-heterogeneous FL framework that can improve clients' generalization performance over unseen data without model aggregation. Instead of model parameters, clients exchange the feature distributions with the server, including the mean and the covariance. Accordingly, clients train a variational transposed convolutional (VTC) neural network with Gaussian latent variables sampled from the feature distributions, and use the VTC model to generate synthetic data. By fine-tuning local models with the synthetic data, clients significantly increase their generalization performance. Experimental results show that our approach obtains higher generalization accuracy than existing model-heterogeneous FL frameworks, as well as lower communication costs and memory consumption
Related papers
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.<n>We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
Federated Learning (FL) models often experience client drift caused by heterogeneous data.
We present an alternative perspective on client drift and aim to mitigate it by generating improved local models.
arXiv Detail & Related papers (2024-02-10T18:14:57Z) - One-Shot Heterogeneous Federated Learning with Local Model-Guided Diffusion Models [40.83058938096914]
FedLMG is a one-shot Federated learning method with Local Model-Guided diffusion models.<n>Clients do not need access to any foundation models but only train and upload their local models.
arXiv Detail & Related papers (2023-11-15T11:11:25Z) - Tackling Intertwined Data and Device Heterogeneities in Federated Learning with Unlimited Staleness [4.9851737525099225]
Federated Learning can be affected by data and device heterogeneities, caused by clients' different local data distributions and latencies in uploading model updates.<n>We present a new FL framework that ensures the accuracy and computational efficiency of this conversion.
arXiv Detail & Related papers (2023-09-24T03:19:40Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous
Federated Learning [9.975023463908496]
Federated Learning (FL) is a machine learning paradigm that enables clients to jointly train a global model by aggregating the locally trained models without sharing any local training data.
We propose a novel regularization technique based on adaptive self-distillation (ASD) for training models on the client side.
Our regularization scheme adaptively adjusts to the client's training data based on the global model entropy and the client's label distribution.
arXiv Detail & Related papers (2023-05-31T07:00:42Z) - Is Aggregation the Only Choice? Federated Learning via Layer-wise Model Recombination [33.12164201146458]
We propose a novel and FL paradigm named FedMR (Federated Model Recombination)
The goal of FedMR is to guide the recombined models to be trained towards a flat area.
Compared with state-of-the-art FL methods, FedMR can significantly improve the inference accuracy without exposing privacy of each client.
arXiv Detail & Related papers (2023-05-18T05:58:24Z) - Efficient Personalized Federated Learning via Sparse Model-Adaptation [47.088124462925684]
Federated Learning (FL) aims to train machine learning models for multiple clients without sharing their own private data.
We propose pFedGate for efficient personalized FL by adaptively and efficiently learning sparse local models.
We show that pFedGate achieves superior global accuracy, individual accuracy and efficiency simultaneously over state-of-the-art methods.
arXiv Detail & Related papers (2023-05-04T12:21:34Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
Federated learning allows a large number of clients with heterogeneous data to coordinate learning of a unified global model.
Standard FL algorithms involve averaging of model parameters or gradient updates to approximate the global model at the server.
We propose a gradient masked averaging approach for FL as an alternative to the standard averaging of client updates.
arXiv Detail & Related papers (2022-01-28T08:42:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.