Improving Noise Efficiency in Privacy-preserving Dataset Distillation
- URL: http://arxiv.org/abs/2508.01749v1
- Date: Sun, 03 Aug 2025 13:15:52 GMT
- Title: Improving Noise Efficiency in Privacy-preserving Dataset Distillation
- Authors: Runkai Zheng, Vishnu Asutosh Dasu, Yinong Oliver Wang, Haohan Wang, Fernando De la Torre,
- Abstract summary: We introduce a novel framework that decouples sampling from optimization for better convergence and improves signal quality.<n>On CIFAR-10, our method achieves a textbf10.0% improvement with 50 images per class and textbf8.3% increase with just textbfone-fifth the distilled set size of previous state-of-the-art methods.
- Score: 59.57846442477106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern machine learning models heavily rely on large datasets that often include sensitive and private information, raising serious privacy concerns. Differentially private (DP) data generation offers a solution by creating synthetic datasets that limit the leakage of private information within a predefined privacy budget; however, it requires a substantial amount of data to achieve performance comparable to models trained on the original data. To mitigate the significant expense incurred with synthetic data generation, Dataset Distillation (DD) stands out for its remarkable training and storage efficiency. This efficiency is particularly advantageous when integrated with DP mechanisms, curating compact yet informative synthetic datasets without compromising privacy. However, current state-of-the-art private DD methods suffer from a synchronized sampling-optimization process and the dependency on noisy training signals from randomly initialized networks. This results in the inefficient utilization of private information due to the addition of excessive noise. To address these issues, we introduce a novel framework that decouples sampling from optimization for better convergence and improves signal quality by mitigating the impact of DP noise through matching in an informative subspace. On CIFAR-10, our method achieves a \textbf{10.0\%} improvement with 50 images per class and \textbf{8.3\%} increase with just \textbf{one-fifth} the distilled set size of previous state-of-the-art methods, demonstrating significant potential to advance privacy-preserving DD.
Related papers
- Dual Utilization of Perturbation for Stream Data Publication under Local Differential Privacy [10.07017446059039]
Local differential privacy (LDP) has emerged as a promising standard.<n>Applying LDP to stream data presents significant challenges, as stream data often involves a large or even infinite number of values.<n>We introduce the Iterative Perturbation IPP method, which utilizes current perturbed results to calibrate the subsequent perturbation process.<n>We prove that these three algorithms satisfy $w$-event differential privacy while significantly improving utility.
arXiv Detail & Related papers (2025-04-21T09:51:18Z) - Federated Learning with Differential Privacy: An Utility-Enhanced Approach [12.614480013684759]
Federated learning has emerged as an attractive approach to protect data privacy by eliminating the need for sharing clients' data.<n>Recent studies have shown that federated learning alone does not guarantee privacy, as private data may still be inferred from the uploaded parameters to the central server.<n>We present a modification to these vanilla differentially private algorithms based on a Haar wavelet transformation step and a novel noise injection scheme that significantly lowers the bound of the noise variance.
arXiv Detail & Related papers (2025-03-27T04:48:29Z) - Linear-Time User-Level DP-SCO via Robust Statistics [55.350093142673316]
User-level differentially private convex optimization (DP-SCO) has garnered significant attention due to the importance of safeguarding user privacy in machine learning applications.<n>Current methods, such as those based on differentially private gradient descent (DP-SGD), often struggle with high noise accumulation and suboptimal utility.<n>We introduce a novel linear-time algorithm that leverages robust statistics, specifically the median and trimmed mean, to overcome these challenges.
arXiv Detail & Related papers (2025-02-13T02:05:45Z) - DP-CDA: An Algorithm for Enhanced Privacy Preservation in Dataset Synthesis Through Randomized Mixing [0.8739101659113155]
We introduce an effective data publishing algorithm emphDP-CDA.<n>Our proposed algorithm generates synthetic datasets by randomly mixing data in a class-specific manner, and inducing carefully-tuned randomness to ensure privacy guarantees.<n>Our results indicate that synthetic datasets produced using the DP-CDA can achieve superior utility compared to those generated by traditional data publishing algorithms, even when subject to the same privacy requirements.
arXiv Detail & Related papers (2024-11-25T06:14:06Z) - Differentially Private Fine-Tuning of Diffusion Models [22.454127503937883]
The integration of Differential Privacy with diffusion models (DMs) presents a promising yet challenging frontier.
Recent developments in this field have highlighted the potential for generating high-quality synthetic data by pre-training on public data.
We propose a strategy optimized for private diffusion models, which minimizes the number of trainable parameters to enhance the privacy-utility trade-off.
arXiv Detail & Related papers (2024-06-03T14:18:04Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Differentially-Private Data Synthetisation for Efficient Re-Identification Risk Control [3.8811062755861956]
$epsilon$-PrivateSMOTE is a technique for safeguarding against re-identification and linkage attacks.
Our proposal combines synthetic data generation via noise-induced adversarial with differential privacy principles to obfuscate high-risk cases.
arXiv Detail & Related papers (2022-12-01T13:20:37Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - Mixed Differential Privacy in Computer Vision [133.68363478737058]
AdaMix is an adaptive differentially private algorithm for training deep neural network classifiers using both private and public image data.
A few-shot or even zero-shot learning baseline that ignores private data can outperform fine-tuning on a large private dataset.
arXiv Detail & Related papers (2022-03-22T06:15:43Z) - P3GM: Private High-Dimensional Data Release via Privacy Preserving
Phased Generative Model [23.91327154831855]
This paper proposes privacy-preserving phased generative model (P3GM) for releasing sensitive data.
P3GM employs the two-phase learning process to make it robust against the noise, and to increase learning efficiency.
Compared with the state-of-the-art methods, our generated samples look fewer noises and closer to the original data in terms of data diversity.
arXiv Detail & Related papers (2020-06-22T09:47:54Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.