Causal Discovery in Multivariate Time Series through Mutual Information Featurization
- URL: http://arxiv.org/abs/2508.01848v1
- Date: Sun, 03 Aug 2025 17:03:13 GMT
- Title: Causal Discovery in Multivariate Time Series through Mutual Information Featurization
- Authors: Gian Marco Paldino, Gianluca Bontempi,
- Abstract summary: Temporal Dependency to Causality (TD2C) learns to recognize complex causal signatures from a rich set of information-theoretic and statistical descriptors.<n>Our results show that TD2C achieves state-of-the-art performance, consistently outperforming established methods.
- Score: 0.1657441317977376
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Discovering causal relationships in complex multivariate time series is a fundamental scientific challenge. Traditional methods often falter, either by relying on restrictive linear assumptions or on conditional independence tests that become uninformative in the presence of intricate, non-linear dynamics. This paper proposes a new paradigm, shifting from statistical testing to pattern recognition. We hypothesize that a causal link creates a persistent and learnable asymmetry in the flow of information through a system's temporal graph, even when clear conditional independencies are obscured. We introduce Temporal Dependency to Causality (TD2C), a supervised learning framework that operationalizes this hypothesis. TD2C learns to recognize these complex causal signatures from a rich set of information-theoretic and statistical descriptors. Trained exclusively on a diverse collection of synthetic time series, TD2C demonstrates remarkable zero-shot generalization to unseen dynamics and established, realistic benchmarks. Our results show that TD2C achieves state-of-the-art performance, consistently outperforming established methods, particularly in high-dimensional and non-linear settings. By reframing the discovery problem, our work provides a robust and scalable new tool for uncovering causal structures in complex systems.
Related papers
- Flow-Based Non-stationary Temporal Regime Causal Structure Learning [49.77103348208835]
We introduce FANTOM, a unified framework for causal discovery.<n>It handles non stationary processes along with non Gaussian and heteroscedastic noises.<n>It simultaneously infers the number of regimes and their corresponding indices and learns each regime's Directed Acyclic Graph.
arXiv Detail & Related papers (2025-06-20T15:12:43Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - TS-CausalNN: Learning Temporal Causal Relations from Non-linear Non-stationary Time Series Data [0.42156176975445486]
We propose a Time-Series Causal Neural Network (TS-CausalNN) to discover contemporaneous and lagged causal relations simultaneously.
In addition to the simple parallel design, an advantage of the proposed model is that it naturally handles the non-stationarity and non-linearity of the data.
arXiv Detail & Related papers (2024-04-01T20:33:29Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Causal Temporal Regime Structure Learning [49.77103348208835]
We present CASTOR, a novel method that concurrently learns the Directed Acyclic Graph (DAG) for each regime.<n>We establish the identifiability of the regimes and DAGs within our framework.<n>Experiments show that CASTOR consistently outperforms existing causal discovery models.
arXiv Detail & Related papers (2023-11-02T17:26:49Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Path Signature Area-Based Causal Discovery in Coupled Time Series [0.0]
We propose the application of confidence sequences to analyze the significance of the magnitude of the signed area between two variables.
This approach provides a new way to define the confidence of a causal link existing between two time series.
arXiv Detail & Related papers (2021-10-23T19:57:22Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.