InspectVLM: Unified in Theory, Unreliable in Practice
- URL: http://arxiv.org/abs/2508.01921v1
- Date: Sun, 03 Aug 2025 21:09:35 GMT
- Title: InspectVLM: Unified in Theory, Unreliable in Practice
- Authors: Conor Wallace, Isaac Corley, Jonathan Lwowski,
- Abstract summary: Unified vision-language models (VLMs) promise to streamline computer vision pipelines by reframing multiple visual tasks within a single language-driven interface.<n>We critically evaluate the viability of this unified paradigm using InspectVLM, a Florence-2-based VLM trained on InspectMM.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unified vision-language models (VLMs) promise to streamline computer vision pipelines by reframing multiple visual tasks such as classification, detection, and keypoint localization within a single language-driven interface. This architecture is particularly appealing in industrial inspection, where managing disjoint task-specific models introduces complexity, inefficiency, and maintenance overhead. In this paper, we critically evaluate the viability of this unified paradigm using InspectVLM, a Florence-2-based VLM trained on InspectMM, our new large-scale multimodal, multitask inspection dataset. While InspectVLM performs competitively on image-level classification and structured keypoint tasks, we find that it fails to match traditional ResNet-based models in core inspection metrics. Notably, the model exhibits brittle behavior under low prompt variability, produces degenerate outputs for fine-grained object detection, and frequently defaults to memorized language responses regardless of visual input. Our findings suggest that while language-driven unification offers conceptual elegance, current VLMs lack the visual grounding and robustness necessary for deployment in precision critical industrial inspections.
Related papers
- Reasoning Multimodal Large Language Model: Data Contamination and Dynamic Evaluation [9.434966074326056]
Multimodal Large Language Models (MLLMs) show impressive vision-language benchmark performance, yet growing concerns about data contamination risk masking true generalization.<n>We propose a novel dynamic evaluation framework to rigorously assess MLLM generalization, moving beyond static benchmarks.<n>We demonstrate that fine-tuning on simulated test data (extreme contamination) drastically sharpens task-specific performance but harms overall generalization.
arXiv Detail & Related papers (2025-06-08T15:52:38Z) - Vision-Language Model for Object Detection and Segmentation: A Review and Evaluation [38.20492321295552]
Vision-Language Model (VLM) have gained widespread adoption in Open-Vocabulary (OV) object detection and segmentation tasks.<n>Despite they have shown promise on OV-related tasks, their effectiveness in conventional vision tasks has thus far been unevaluated.
arXiv Detail & Related papers (2025-04-13T08:28:13Z) - OmniParser V2: Structured-Points-of-Thought for Unified Visual Text Parsing and Its Generality to Multimodal Large Language Models [58.45517851437422]
Visually-situated text parsing (VsTP) has recently seen notable advancements, driven by the growing demand for automated document understanding.<n>Existing solutions often rely on task-specific architectures and objectives for individual tasks.<n>In this paper, we introduce Omni V2, a universal model that unifies VsTP typical tasks, including text spotting, key information extraction, table recognition, and layout analysis.
arXiv Detail & Related papers (2025-02-22T09:32:01Z) - Teaching VLMs to Localize Specific Objects from In-context Examples [56.797110842152]
We find that present-day Vision-Language Models (VLMs) lack a fundamental cognitive ability: learning to localize specific objects in a scene by taking into account the context.<n>This work is the first to explore and benchmark personalized few-shot localization for VLMs.
arXiv Detail & Related papers (2024-11-20T13:34:22Z) - Visual-Linguistic Agent: Towards Collaborative Contextual Object Reasoning [26.35257570870916]
Visual-Linguistic Agent (VLA) is a collaborative framework that combines the relational reasoning strengths of MLLMs with the precise localization capabilities of traditional object detectors.
VLA significantly enhances both spatial reasoning and object localization, addressing key challenges in multimodal understanding.
arXiv Detail & Related papers (2024-11-15T15:02:06Z) - VL4AD: Vision-Language Models Improve Pixel-wise Anomaly Detection [5.66050466694651]
We propose Vision-Language (VL) encoders into existing anomaly detectors to leverage the semantically broad VL pre-training for improved outlier awareness.
We also propose a new scoring function that enables data- and training-free outlier supervision via textual prompts.
The resulting VL4AD model achieves competitive performance on widely used benchmark datasets.
arXiv Detail & Related papers (2024-09-25T20:12:10Z) - Response Wide Shut: Surprising Observations in Basic Vision Language Model Capabilities [30.176918208200604]
Vision-Language Models (VLMs) have emerged as general purpose tools for addressing a variety of complex computer vision problems.
These models have been shown to be highly capable, but also lacking some basic visual understanding skills.
This paper sets out to understand the limitations of SoTA VLMs on fundamental visual tasks.
arXiv Detail & Related papers (2024-08-13T08:26:32Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.<n> MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - PEVL: Position-enhanced Pre-training and Prompt Tuning for
Vision-language Models [127.17675443137064]
We introduce PEVL, which enhances the pre-training and prompt tuning of vision-language models with explicit object position modeling.
PEVL reformulates discretized object positions and language in a unified language modeling framework.
We show that PEVL enables state-of-the-art performance on position-sensitive tasks such as referring expression comprehension and phrase grounding.
arXiv Detail & Related papers (2022-05-23T10:17:53Z) - Multi-modal Transformers Excel at Class-agnostic Object Detection [105.10403103027306]
We argue that existing methods lack a top-down supervision signal governed by human-understandable semantics.
We develop an efficient and flexible MViT architecture using multi-scale feature processing and deformable self-attention.
We show the significance of MViT proposals in a diverse range of applications.
arXiv Detail & Related papers (2021-11-22T18:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.