NaviMaster: Learning a Unified Policy for GUI and Embodied Navigation Tasks
- URL: http://arxiv.org/abs/2508.02046v1
- Date: Mon, 04 Aug 2025 04:28:18 GMT
- Title: NaviMaster: Learning a Unified Policy for GUI and Embodied Navigation Tasks
- Authors: Zhihao Luo, Wentao Yan abd Jingyu Gong, Min Wang, Zhizhong Zhang, Xuhong Wang, Yuan Xie, Xin Tan,
- Abstract summary: NaviMaster is the first unified agent capable of seamlessly integrating GUI navigation and embodied navigation within a single framework.<n>We show that NaviMaster is shown to outperform state-of-the-art agents in GUI navigation, spatial affordance prediction, and embodied navigation.
- Score: 26.685539474718055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in Graphical User Interface (GUI) and embodied navigation have driven significant progress, yet these domains have largely evolved in isolation, with disparate datasets and training paradigms. In this paper, we observe that both tasks can be formulated as Markov Decision Processes (MDP), suggesting a foundational principle for their unification. Hence, we present NaviMaster, the first unified agent capable of seamlessly integrating GUI navigation and embodied navigation within a single framework. Specifically, NaviMaster (i) proposes a visual-target trajectory collection pipeline that generates trajectories for both GUI and embodied tasks in one formulation. (ii) employs a unified reinforcement learning framework on the mix data for better generalization. (iii) designs a novel distance-aware reward to ensure efficient learning from the trajectories. Through extensive experiments on out-of-domain benchmarks, NaviMaster is shown to outperform state-of-the-art agents in GUI navigation, spatial affordance prediction, and embodied navigation. Ablation studies further confirm the efficacy of our unified training strategy, data mixing strategy, and reward design.
Related papers
- PIG-Nav: Key Insights for Pretrained Image Goal Navigation Models [16.820485795257195]
PIG-Nav (Pretrained Image-Goal Navigation) is a new approach that further investigates pretraining strategies for vision-based navigation models.<n>We identify two critical design choices that consistently improve the performance of pretrained navigation models.<n>Our model achieves an average improvement of 22.6% in zero-shot settings and a 37.5% improvement in fine-tuning settings over existing visual navigation foundation models.
arXiv Detail & Related papers (2025-07-23T05:34:20Z) - EvolveNav: Self-Improving Embodied Reasoning for LLM-Based Vision-Language Navigation [111.0993686148283]
We propose a novel sElf-improving embodied reasoning framework for boosting Vision-Language Navigation, dubbed EvolveNav.<n>Our EvolveNav consists of two stages: (1) Formalized CoT Supervised Fine-Tuning, where we train the model with formalized CoT labels to activate the model's navigational reasoning capabilities and increase the reasoning speed; (2) Self-Reflective Post-Training, where the model is iteratively trained with its own reasoning outputs as self-enriched CoT labels to enhance the supervision diversity.
arXiv Detail & Related papers (2025-06-02T11:28:32Z) - NavigateDiff: Visual Predictors are Zero-Shot Navigation Assistants [24.689242976554482]
Navigating unfamiliar environments presents significant challenges for household robots.<n>Existing reinforcement learning methods cannot be directly transferred to new environments.<n>We try to transfer the logical knowledge and the generalization ability of pre-trained foundation models to zero-shot navigation.
arXiv Detail & Related papers (2025-02-19T17:27:47Z) - OVER-NAV: Elevating Iterative Vision-and-Language Navigation with Open-Vocabulary Detection and StructurEd Representation [96.46961207887722]
OVER-NAV aims to go over and beyond the current arts of IVLN techniques.
To fully exploit the interpreted navigation data, we introduce a structured representation, coded Omnigraph.
arXiv Detail & Related papers (2024-03-26T02:34:48Z) - NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning Disentangled Reasoning [97.88246428240872]
Vision-and-Language Navigation (VLN), as a crucial research problem of Embodied AI, requires an embodied agent to navigate through complex 3D environments following natural language instructions.<n>Recent research has highlighted the promising capacity of large language models (LLMs) in VLN by improving navigational reasoning accuracy and interpretability.<n>This paper introduces a novel strategy called Navigational Chain-of-Thought (NavCoT), where we fulfill parameter-efficient in-domain training to enable self-guided navigational decision.
arXiv Detail & Related papers (2024-03-12T07:27:02Z) - Towards Learning a Generalist Model for Embodied Navigation [24.816490551945435]
We propose the first generalist model for embodied navigation, NaviLLM.
It adapts LLMs to embodied navigation by introducing schema-based instruction.
We conduct extensive experiments to evaluate the performance and generalizability of our model.
arXiv Detail & Related papers (2023-12-04T16:32:51Z) - NavGPT: Explicit Reasoning in Vision-and-Language Navigation with Large
Language Models [17.495162643127003]
We introduce the NavGPT to reveal the reasoning capability of GPT models in complex embodied scenes.
NavGPT takes the textual descriptions of visual observations, navigation history, and future explorable directions as inputs to reason the agent's current status.
We show that NavGPT is capable of generating high-quality navigational instructions from observations and actions along a path.
arXiv Detail & Related papers (2023-05-26T14:41:06Z) - ENTL: Embodied Navigation Trajectory Learner [37.43079415330256]
We propose a method for extracting long sequence representations for embodied navigation.
We train our model using vector-quantized predictions of future states conditioned on current actions.
A key property of our approach is that the model is pre-trained without any explicit reward signal.
arXiv Detail & Related papers (2023-04-05T17:58:33Z) - Towards Versatile Embodied Navigation [120.73460380993305]
Vienna is a versatile embodied navigation agent that simultaneously learns to perform the four navigation tasks with one model.
We empirically demonstrate that, compared with learning each visual navigation task individually, our agent achieves comparable or even better performance with reduced complexity.
arXiv Detail & Related papers (2022-10-30T11:53:49Z) - Waypoint Models for Instruction-guided Navigation in Continuous
Environments [68.2912740006109]
We develop a class of language-conditioned waypoint prediction networks to examine this question.
We measure task performance and estimated execution time on a profiled LoCoBot robot.
Our models outperform prior work in VLN-CE and set a new state-of-the-art on the public leaderboard.
arXiv Detail & Related papers (2021-10-05T17:55:49Z) - Unsupervised Domain Adaptation for Visual Navigation [115.85181329193092]
We propose an unsupervised domain adaptation method for visual navigation.
Our method translates the images in the target domain to the source domain such that the translation is consistent with the representations learned by the navigation policy.
arXiv Detail & Related papers (2020-10-27T18:22:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.