Free-MoRef: Instantly Multiplexing Context Perception Capabilities of Video-MLLMs within Single Inference
- URL: http://arxiv.org/abs/2508.02134v1
- Date: Mon, 04 Aug 2025 07:31:10 GMT
- Title: Free-MoRef: Instantly Multiplexing Context Perception Capabilities of Video-MLLMs within Single Inference
- Authors: Kuo Wang, Quanlong Zheng, Junlin Xie, Yanhao Zhang, Jinguo Luo, Haonan Lu, Liang Lin, Fan Zhou, Guanbin Li,
- Abstract summary: Free-MoRef is a training-free approach to multiplex the context perception capabilities of Video-MLLMs.<n>Experiments show that Free-MoRef achieves full perception of 2$times$ to 8$times$ longer input frames without compression on a single A100 GPU.
- Score: 88.57742986765238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video Multimodal Large Language Models~(Video-MLLM) have achieved remarkable advancements in video understanding tasks. However, constrained by the context length limitation in the underlying LLMs, existing Video-MLLMs typically exhibit suboptimal performance on long video scenarios. To understand extended input frames, common solutions span token compression and streaming inference techniques, which sacrifice feature granularity or inference efficiency. Differently, to efficiently achieve comprehensive understanding of longer frame inputs, we draw ideas from MoE and propose a training-free approach \textbf{Free-MoRef}, which instantly multiplexes the context perception capabilities of Video-MLLMs within one inference pass. Specifically, Free-MoRef reconstructs the vision tokens into several short sequences as multi-references. Subsequently, we introduce MoRef-attention, which gathers clues from the multi-reference chunks in parallel to summarize unified query activations. After the shadow layers in LLMs, a reference fusion step is derived to compose a final mixed reasoning sequence with key tokens from parallel chunks, which compensates the cross-reference vision interactions that are neglected in MoRef-attention. By splitting and fusing the long vision token sequences, Free-MoRef achieves improved performance under much lower computing costs in reasoning multiplexed context length, demonstrating strong efficiency and effectiveness. Experiments on VideoMME, MLVU, LongVideoBench show that Free-MoRef achieves full perception of 2$\times$ to 8$\times$ longer input frames without compression on a single A100 GPU while keeping instant responses, thereby bringing significant performance gains, even surpassing dedicatedly trained long-video-MLLMs. Codes are available at https://github.com/wkfdb/Free-MoRef
Related papers
- SiLVR: A Simple Language-based Video Reasoning Framework [71.77141065418238]
We present SiLVR, a Simple Language-based Video Reasoning framework.<n>In the first stage, SiLVR transforms raw video into language-based representations using multisensory inputs.<n>In the second stage, language descriptions are fed into a powerful reasoning LLM to solve complex video-language understanding tasks.
arXiv Detail & Related papers (2025-05-30T17:59:19Z) - Token-Efficient Long Video Understanding for Multimodal LLMs [101.70681093383365]
STORM is a novel architecture incorporating a dedicated temporal encoder between the image encoder and the Video-LLMs.<n>We show that STORM achieves state-of-the-art results across various long video understanding benchmarks.
arXiv Detail & Related papers (2025-03-06T06:17:38Z) - InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling [56.130911402831906]
This paper aims to improve the performance of video large language models (LM) via long and rich context (LRC) modeling.<n>We develop a new version of InternVideo2.5 with focus on enhancing the original MLLMs' ability to perceive fine-grained details in videos.<n> Experimental results demonstrate this unique designML LRC greatly improves the results of video MLLM in mainstream understanding benchmarks.
arXiv Detail & Related papers (2025-01-21T18:59:00Z) - AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning [19.68349294206012]
Large language models (LLMs) have enabled the creation of multi-modal LLMs that exhibit strong comprehension of visual data such as images and videos.<n>We propose a training-free adaptive inference method for multi-modal LLMs that can accommodate a broad range of efficiency requirements.
arXiv Detail & Related papers (2024-12-04T11:47:57Z) - LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding [65.46303012350207]
LongVU is an adaptive compression mechanism that reduces the number of video tokens while preserving visual details of long videos.
We leverage DINOv2 features to remove redundant frames that exhibit high similarity.
We perform spatial token reduction across frames based on their temporal dependencies.
arXiv Detail & Related papers (2024-10-22T21:21:37Z) - Video-XL: Extra-Long Vision Language Model for Hour-Scale Video Understanding [25.61734041983714]
Video-XL is a novel approach that leverages MLLMs' inherent key-value sparsification capacity to condense the visual input.<n>Video-XL's effectiveness is verified from three aspects. First, it achieves a superior long-video understanding capability, outperforming state-of-the-art models of comparable sizes.
arXiv Detail & Related papers (2024-09-22T15:13:31Z) - Inf-MLLM: Efficient Streaming Inference of Multimodal Large Language Models on a Single GPU [14.719538667881311]
Inf-MLLM is an efficient inference framework for Multimodal Large Language Models (MLLMs)
We show that Inf-MLLM enables multiple LLMs and MLLMs to achieve stable performance over 4M-token long texts and multi-round conversations with 1-hour-long videos on a single GPU.
arXiv Detail & Related papers (2024-09-11T12:44:12Z) - MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding [66.56100008577134]
This study focuses on designing an efficient and effective model for long-term video understanding.
We propose to process videos in an online manner and store past video information in a memory bank.
Our model can achieve state-of-the-art performances across multiple datasets.
arXiv Detail & Related papers (2024-04-08T17:59:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.