Large-Scale Model Enabled Semantic Communication Based on Robust Knowledge Distillation
- URL: http://arxiv.org/abs/2508.02148v1
- Date: Mon, 04 Aug 2025 07:47:18 GMT
- Title: Large-Scale Model Enabled Semantic Communication Based on Robust Knowledge Distillation
- Authors: Kuiyuan DIng, Caili Guo, Yang Yang, Zhongtian Du, Walid Saad,
- Abstract summary: Large-scale models (LSMs) can be an effective framework for semantic representation and understanding.<n>However, their direct deployment is often hindered by high computational complexity and resource requirements.<n>This paper proposes a novel knowledge distillation based semantic communication framework.
- Score: 53.16213723669751
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale models (LSMs) can be an effective framework for semantic representation and understanding, thereby providing a suitable tool for designing semantic communication (SC) systems. However, their direct deployment is often hindered by high computational complexity and resource requirements. In this paper, a novel robust knowledge distillation based semantic communication (RKD-SC) framework is proposed to enable efficient and \textcolor{black}{channel-noise-robust} LSM-powered SC. The framework addresses two key challenges: determining optimal compact model architectures and effectively transferring knowledge while maintaining robustness against channel noise. First, a knowledge distillation-based lightweight differentiable architecture search (KDL-DARTS) algorithm is proposed. This algorithm integrates knowledge distillation loss and a complexity penalty into the neural architecture search process to identify high-performance, lightweight semantic encoder architectures. Second, a novel two-stage robust knowledge distillation (RKD) algorithm is developed to transfer semantic capabilities from an LSM (teacher) to a compact encoder (student) and subsequently enhance system robustness. To further improve resilience to channel impairments, a channel-aware transformer (CAT) block is introduced as the channel codec, trained under diverse channel conditions with variable-length outputs. Extensive simulations on image classification tasks demonstrate that the RKD-SC framework significantly reduces model parameters while preserving a high degree of the teacher model's performance and exhibiting superior robustness compared to existing methods.
Related papers
- Lightweight Task-Oriented Semantic Communication Empowered by Large-Scale AI Models [66.57755931421285]
Large-scale artificial intelligence (LAI) models pose significant challenges for real-time communication scenarios.<n>This paper proposes utilizing knowledge distillation (KD) techniques to extract and condense knowledge from LAI models.<n>We propose a fast distillation method featuring a pre-stored compression mechanism that eliminates the need for repetitive inference.
arXiv Detail & Related papers (2025-06-16T08:42:16Z) - C2D-ISR: Optimizing Attention-based Image Super-resolution from Continuous to Discrete Scales [6.700548615812325]
We propose a novel framework, textbfC2D-ISR, for optimizing attention-based image super-resolution models.<n>Our approach is based on a two-stage training methodology and a hierarchical encoding mechanism.<n>In addition, we generalize the hierarchical encoding mechanism with existing attention-based network structures.
arXiv Detail & Related papers (2025-03-17T21:52:18Z) - Joint Transmit and Pinching Beamforming for Pinching Antenna Systems (PASS): Optimization-Based or Learning-Based? [89.05848771674773]
A novel antenna system ()-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed.<n>It consists of multiple waveguides, which equip numerous low-cost antennas, named (PAs)<n>The positions of PAs can be reconfigured to both spanning large-scale path and space.
arXiv Detail & Related papers (2025-02-12T18:54:10Z) - IncSAR: A Dual Fusion Incremental Learning Framework for SAR Target Recognition [13.783950035836593]
IncSAR is an incremental learning framework designed to tackle catastrophic forgetting in target recognition.<n>To mitigate the speckle noise inherent in SAR images, we employ a denoising module based on a neural network approximation.<n>Experiments on the MSTAR, SAR-AIRcraft-1.0, and OpenSARShip benchmark datasets demonstrate that IncSAR significantly outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-08T08:49:47Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Knowledge Distillation Based Semantic Communications For Multiple Users [10.770552656390038]
We consider the semantic communication (SemCom) system with multiple users, where there is a limited number of training samples and unexpected interference.
We propose a knowledge distillation (KD) based system where Transformer based encoder-decoder is implemented as the semantic encoder-decoder and fully connected neural networks are implemented as the channel encoder-decoder.
Numerical results demonstrate that KD significantly improves the robustness and the generalization ability when applied to unexpected interference, and it reduces the performance loss when compressing the model size.
arXiv Detail & Related papers (2023-11-23T03:28:14Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.