Efficient Chambolle-Pock based algorithms for Convoltional sparse representation
- URL: http://arxiv.org/abs/2508.02152v1
- Date: Mon, 04 Aug 2025 07:49:59 GMT
- Title: Efficient Chambolle-Pock based algorithms for Convoltional sparse representation
- Authors: Yi Liu, Junjing Li, Yang Chen, Haowei Tang, Pengcheng Zhang, Tianling Lyu, Zhiguo Gui,
- Abstract summary: convolutional sparse coding (CSC) and convolutional dictionary learning (CDL) are used in image processing.<n>In this paper, a novel fast and efficient method using Chambolle-Pock(CP) framework is proposed.<n> Experiments show that for noise-free image the proposed CSC algorithms can achieve rival results of the latest ADMM-based approach.
- Score: 9.797229260717092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently convolutional sparse representation (CSR), as a sparse representation technique, has attracted increasing attention in the field of image processing, due to its good characteristic of translate-invariance. The content of CSR usually consists of convolutional sparse coding (CSC) and convolutional dictionary learning (CDL), and many studies focus on how to solve the corresponding optimization problems. At present, the most efficient optimization scheme for CSC is based on the alternating direction method of multipliers (ADMM). However, the ADMM-based approach involves a penalty parameter that needs to be carefully selected, and improper parameter selection may result in either no convergence or very slow convergence. In this paper, a novel fast and efficient method using Chambolle-Pock(CP) framework is proposed, which does not require extra manual selection parameters in solving processing, and has faster convergence speed. Furthermore, we propose an anisotropic total variation penalty of the coefficient maps for CSC and apply the CP algorithm to solve it. In addition, we also apply the CP framework to solve the corresponding CDL problem. Experiments show that for noise-free image the proposed CSC algorithms can achieve rival results of the latest ADMM-based approach, while outperforms in removing noise from Gaussian noise pollution image.
Related papers
- A Gradient Meta-Learning Joint Optimization for Beamforming and Antenna Position in Pinching-Antenna Systems [63.213207442368294]
We consider a novel optimization design for multi-waveguide pinching-antenna systems.<n>The proposed GML-JO algorithm is robust to different choices and better performance compared with the existing optimization methods.
arXiv Detail & Related papers (2025-06-14T17:35:27Z) - Adam assisted Fully informed Particle Swarm Optimzation ( Adam-FIPSO ) based Parameter Prediction for the Quantum Approximate Optimization Algorithm (QAOA) [1.024113475677323]
The Quantum Approximate Optimization Algorithm (QAOA) is a prominent variational algorithm used for solving optimization problems such as the Max-Cut problem.<n>A key challenge in QAOA lies in efficiently identifying suitable parameters that lead to high-quality solutions.
arXiv Detail & Related papers (2025-06-07T13:14:41Z) - Alternating minimization for square root principal component pursuit [2.449191760736501]
We develop efficient algorithms for solving the square root principal component pursuit (SRPCP) problem.<n>Specifically, we propose a tuning-free alternating minimization (AltMin) algorithm, where each iteration involves subproblems enjoying closed-form optimal solutions.<n>We introduce techniques based on the variational formulation of the nuclear norm and Burer-Monteiro decomposition to further accelerate the AltMin method.
arXiv Detail & Related papers (2024-12-31T14:43:50Z) - A Near-Optimal Single-Loop Stochastic Algorithm for Convex Finite-Sum Coupled Compositional Optimization [53.14532968909759]
We introduce an efficient single-loop primal-dual block-coordinate algorithm called ALEXR.<n>We establish the convergence rates of ALEXR in both convex and strongly convex cases under smoothness and non-smoothness conditions.<n> Experimental results on GDRO and partial Area Under the ROC Curve for cFCCO demonstrate the promising performance of our algorithm.
arXiv Detail & Related papers (2023-12-04T19:00:07Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
We propose a novel optimization framework for the hyperspectral deconvolution problem, called DeepMix.<n>It consists of three distinct modules, namely, a data consistency module, a module that enforces the effect of the handcrafted regularizers, and a denoising module.<n>This work proposes a context aware denoising module designed to sustain the advancements achieved by the cooperative efforts of the other modules.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Meta-Learning Digitized-Counterdiabatic Quantum Optimization [3.0638256603183054]
We tackle the problem of finding suitable initial parameters for variational optimization by employing a meta-learning technique using recurrent neural networks.
We investigate this technique with the recently proposed digitized-counterdiabatic quantum approximate optimization algorithm (DC-QAOA)
The combination of meta learning and DC-QAOA enables us to find optimal initial parameters for different models, such as MaxCut problem and the Sherrington-Kirkpatrick model.
arXiv Detail & Related papers (2022-06-20T18:57:50Z) - Adaptive Approach For Sparse Representations Using The Locally
Competitive Algorithm For Audio [5.6394515393964575]
This paper presents an adaptive approach to optimize the gammachirp's parameters.
The proposed method consists of taking advantage of the LCA's neural architecture to automatically adapt the gammachirp's filterbank.
Results demonstrate an improvement in the LCA's performance with our approach in terms of sparsity, reconstruction quality, and convergence time.
arXiv Detail & Related papers (2021-09-29T20:26:16Z) - CSCF: a chaotic sine cosine firefly Algorithm for practical application
problems [0.0]
Several optimization algorithms namely firefly algorithm, sine cosine algorithm, particle swarm optimization algorithm have few drawbacks such as computational complexity, convergence speed etc.
This paper develops a novel Chaotic Sine Cosine Firefly (CSCF) algorithm with numerous variants to solve optimization problems.
arXiv Detail & Related papers (2020-11-20T08:54:28Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Kullback-Leibler Divergence-Based Fuzzy $C$-Means Clustering
Incorporating Morphological Reconstruction and Wavelet Frames for Image
Segmentation [152.609322951917]
We come up with a Kullback-Leibler (KL) divergence-based Fuzzy C-Means (FCM) algorithm by incorporating a tight wavelet frame transform and a morphological reconstruction operation.
The proposed algorithm works well and comes with better segmentation performance than other comparative algorithms.
arXiv Detail & Related papers (2020-02-21T05:19:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.