Improving Generalization of Language-Conditioned Robot Manipulation
- URL: http://arxiv.org/abs/2508.02405v1
- Date: Mon, 04 Aug 2025 13:29:26 GMT
- Title: Improving Generalization of Language-Conditioned Robot Manipulation
- Authors: Chenglin Cui, Chaoran Zhu, Changjae Oh, Andrea Cavallaro,
- Abstract summary: We present a framework that learns object-arrangement tasks from just a few demonstrations.<n>We validate our method on both simulation and real-world robotic environments.
- Score: 29.405161073483175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The control of robots for manipulation tasks generally relies on visual input. Recent advances in vision-language models (VLMs) enable the use of natural language instructions to condition visual input and control robots in a wider range of environments. However, existing methods require a large amount of data to fine-tune VLMs for operating in unseen environments. In this paper, we present a framework that learns object-arrangement tasks from just a few demonstrations. We propose a two-stage framework that divides object-arrangement tasks into a target localization stage, for picking the object, and a region determination stage for placing the object. We present an instance-level semantic fusion module that aligns the instance-level image crops with the text embedding, enabling the model to identify the target objects defined by the natural language instructions. We validate our method on both simulation and real-world robotic environments. Our method, fine-tuned with a few demonstrations, improves generalization capability and demonstrates zero-shot ability in real-robot manipulation scenarios.
Related papers
- LIAM: Multimodal Transformer for Language Instructions, Images, Actions and Semantic Maps [18.602777449136738]
We propose LIAM - an end-to-end model that predicts action transcripts based on language, image, action, and map inputs.<n>We evaluate our method on the ALFRED dataset, a simulator-generated benchmark for domestic tasks.
arXiv Detail & Related papers (2025-03-15T18:54:06Z) - LLaRA: Supercharging Robot Learning Data for Vision-Language Policy [56.505551117094534]
We introduce LLaRA: Large Language and Robotics Assistant, a framework that formulates robot action policy as visuo-textual conversations.<n>First, we present an automated pipeline to generate conversation-style instruction tuning data for robots from existing behavior cloning datasets.<n>We show that a VLM finetuned with a limited amount of such datasets can produce meaningful action decisions for robotic control.
arXiv Detail & Related papers (2024-06-28T17:59:12Z) - Object-Centric Instruction Augmentation for Robotic Manipulation [29.491990994901666]
We introduce the textitObject-Centric Instruction Augmentation (OCI) framework to augment highly semantic and information-dense language instruction with position cues.
We utilize a Multi-modal Large Language Model (MLLM) to weave knowledge of object locations into natural language instruction.
We demonstrate that robotic manipulator imitation policies trained with our enhanced instructions outperform those relying solely on traditional language instructions.
arXiv Detail & Related papers (2024-01-05T13:54:45Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - SAGE: Bridging Semantic and Actionable Parts for GEneralizable Manipulation of Articulated Objects [9.500480417077272]
We propose a novel framework that bridges semantic and actionable parts of articulated objects to achieve generalizable manipulation under natural language instructions.
A part-grounding module maps the semantic parts into so-called Generalizable Actionable Parts (GAParts), which inherently carry information about part motion.
An interactive feedback module is incorporated to respond to failures, which closes the loop and increases the robustness of the overall framework.
arXiv Detail & Related papers (2023-12-03T07:22:42Z) - RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic
Control [140.48218261864153]
We study how vision-language models trained on Internet-scale data can be incorporated directly into end-to-end robotic control.
Our approach leads to performant robotic policies and enables RT-2 to obtain a range of emergent capabilities from Internet-scale training.
arXiv Detail & Related papers (2023-07-28T21:18:02Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.<n>Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.<n>Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions
with Large Language Model [63.66204449776262]
Instruct2Act is a framework that maps multi-modal instructions to sequential actions for robotic manipulation tasks.
Our approach is adjustable and flexible in accommodating various instruction modalities and input types.
Our zero-shot method outperformed many state-of-the-art learning-based policies in several tasks.
arXiv Detail & Related papers (2023-05-18T17:59:49Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
Large language models (LLMs) can be used to score potential next actions during task planning.
We present a programmatic LLM prompt structure that enables plan generation functional across situated environments.
arXiv Detail & Related papers (2022-09-22T20:29:49Z) - VLMbench: A Compositional Benchmark for Vision-and-Language Manipulation [11.92150014766458]
We aim to fill the blank of the last mile of embodied agents -- object manipulation by following human guidance.
We build a Vision-and-Language Manipulation benchmark (VLMbench) based on it, containing various language instructions on categorized robotic manipulation tasks.
modular rule-based task templates are created to automatically generate robot demonstrations with language instructions.
arXiv Detail & Related papers (2022-06-17T03:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.