HGTS-Former: Hierarchical HyperGraph Transformer for Multivariate Time Series Analysis
- URL: http://arxiv.org/abs/2508.02411v1
- Date: Mon, 04 Aug 2025 13:33:28 GMT
- Title: HGTS-Former: Hierarchical HyperGraph Transformer for Multivariate Time Series Analysis
- Authors: Xiao Wang, Hao Si, Fan Zhang, Xiaoya Zhou, Dengdi Sun, Wanli Lyu, Qingquan Yang, Jin Tang,
- Abstract summary: This paper proposes a novel hypergraph-based time series transformer backbone network, termed HGTS-Former.<n>We first normalize and embed each patch into tokens. Then, we adopt the multi-head self-attention to enhance the temporal representation of each patch.<n>The hierarchical hypergraphs are constructed to aggregate the temporal patterns within each channel and fine-grained relations between different variables.
- Score: 14.388097471205102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate time series analysis has long been one of the key research topics in the field of artificial intelligence. However, analyzing complex time series data remains a challenging and unresolved problem due to its high dimensionality, dynamic nature, and complex interactions among variables. Inspired by the strong structural modeling capability of hypergraphs, this paper proposes a novel hypergraph-based time series transformer backbone network, termed HGTS-Former, to address the multivariate coupling in time series data. Specifically, given the multivariate time series signal, we first normalize and embed each patch into tokens. Then, we adopt the multi-head self-attention to enhance the temporal representation of each patch. The hierarchical hypergraphs are constructed to aggregate the temporal patterns within each channel and fine-grained relations between different variables. After that, we convert the hyperedge into node features through the EdgeToNode module and adopt the feed-forward network to further enhance the output features. Extensive experiments conducted on two multivariate time series tasks and eight datasets fully validated the effectiveness of our proposed HGTS-Former. The source code will be released on https://github.com/Event-AHU/Time_Series_Analysis.
Related papers
- Hypergraphs on high dimensional time series sets using signature transform [0.0]
We develop a framework to handle collections of time series with hypergraphs.<n>We leverage the properties of signature transforms to introduce controlled randomness.<n>We validate our method on synthetic datasets and present promising results.
arXiv Detail & Related papers (2025-07-21T17:02:36Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.<n>We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.<n> Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
Unsupervised anomaly detection in time series is essential in industrial applications, as it significantly reduces the need for manual intervention.
Traditional methods use Graph Neural Networks (GNNs) or Transformers to analyze spatial while RNNs to model temporal dependencies.
This paper introduces a novel temporal model built on an enhanced Graph Attention Network (GAT) for multivariate time series anomaly detection called TopoGDN.
arXiv Detail & Related papers (2024-08-23T14:06:30Z) - Leveraging 2D Information for Long-term Time Series Forecasting with Vanilla Transformers [55.475142494272724]
Time series prediction is crucial for understanding and forecasting complex dynamics in various domains.
We introduce GridTST, a model that combines the benefits of two approaches using innovative multi-directional attentions.
The model consistently delivers state-of-the-art performance across various real-world datasets.
arXiv Detail & Related papers (2024-05-22T16:41:21Z) - TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis [80.56913334060404]
Time series analysis is of immense importance in applications, such as weather forecasting, anomaly detection, and action recognition.
Previous methods attempt to accomplish this directly from the 1D time series.
We ravel out the complex temporal variations into the multiple intraperiod- and interperiod-variations.
arXiv Detail & Related papers (2022-10-05T12:19:51Z) - Expressing Multivariate Time Series as Graphs with Time Series Attention
Transformer [14.172091921813065]
We propose the Time Series Attention Transformer (TSAT) for multivariate time series representation learning.
Using TSAT, we represent both temporal information and inter-dependencies of time series in terms of edge-enhanced dynamic graphs.
We show that TSAT clearly outerperforms six state-of-the-art baseline methods in various forecasting horizons.
arXiv Detail & Related papers (2022-08-19T12:25:56Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.