OptiHive: Ensemble Selection for LLM-Based Optimization via Statistical Modeling
- URL: http://arxiv.org/abs/2508.02503v1
- Date: Mon, 04 Aug 2025 15:11:51 GMT
- Title: OptiHive: Ensemble Selection for LLM-Based Optimization via Statistical Modeling
- Authors: Maxime Bouscary, Saurabh Amin,
- Abstract summary: We introduce OptiHive, a framework that produces high-quality solvers for optimization problems from natural-correction descriptions without iterative self-language.<n>OptiHive uses a single batched LLM query to generate diverse components (solvers, problem instances, and validation tests) and filters out erroneous components to ensure fully interpretable outputs.<n>On tasks ranging from traditional optimization problems to challenging variants of the Multi-Depot Vehicle Routing Problem, OptiHive significantly outperforms baselines.
- Score: 3.8366697175402225
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: LLM-based solvers have emerged as a promising means of automating problem modeling and solving. However, they remain unreliable and often depend on iterative repair loops that result in significant latency. We introduce OptiHive, an LLM-based framework that produces high-quality solvers for optimization problems from natural-language descriptions without iterative self-correction. OptiHive uses a single batched LLM query to generate diverse components (solvers, problem instances, and validation tests) and filters out erroneous components to ensure fully interpretable outputs. Taking into account the imperfection of the generated components, we employ a statistical model to infer their true performance, enabling principled uncertainty quantification and solver selection. On tasks ranging from traditional optimization problems to challenging variants of the Multi-Depot Vehicle Routing Problem, OptiHive significantly outperforms baselines, increasing the optimality rate from 5\% to 92\% on the most complex problems.
Related papers
- OPT-BENCH: Evaluating LLM Agent on Large-Scale Search Spaces Optimization Problems [19.586884180343038]
OPT-BENCH is a benchmark designed to evaluate Large Language Models (LLMs) on large-scale search space optimization problems.<n> OPT-Agent emulates human reasoning when tackling complex problems by generating, validating, and iteratively improving solutions through historical feedback.
arXiv Detail & Related papers (2025-06-12T14:46:41Z) - Self-ensemble: Mitigating Confidence Distortion for Large Language Models [89.03110940871765]
Large Language Models exhibit a confidence distortion problem on multi-choice question-answering.<n>We propose Self-ensemble to solve this problem.<n> Experimental results on three LLMs and datasets demonstrate that Self-ensemble comprehensively addresses the confidence distortion problem.
arXiv Detail & Related papers (2025-06-02T17:59:29Z) - Preference Optimization for Combinatorial Optimization Problems [54.87466279363487]
Reinforcement Learning (RL) has emerged as a powerful tool for neural optimization, enabling models learns that solve complex problems without requiring expert knowledge.<n>Despite significant progress, existing RL approaches face challenges such as diminishing reward signals and inefficient exploration in vast action spaces.<n>We propose Preference Optimization, a novel method that transforms quantitative reward signals into qualitative preference signals via statistical comparison modeling.
arXiv Detail & Related papers (2025-05-13T16:47:00Z) - Can Large Language Models Be Trusted as Evolutionary Optimizers for Network-Structured Combinatorial Problems? [8.082897040940447]
Large Language Models (LLMs) have shown strong capabilities in language understanding and reasoning across diverse domains.<n>In this work, we propose a systematic framework to evaluate the capability of LLMs to engage with problem structures.<n>We adopt the commonly used evolutionary (EVO) and propose a comprehensive evaluation framework that rigorously assesses the output fidelity of LLM-based operators.
arXiv Detail & Related papers (2025-01-25T05:19:19Z) - Autoformulation of Mathematical Optimization Models Using LLMs [50.030647274271516]
This paper approaches the problem of $textitautoformulation$: the automated creation of solver-ready optimization models from natural language problem descriptions.<n>We identify three core challenges of autoformulation: $textit(1)$ the vast, problem-dependent hypothesis space, and $textit(2)$ efficient and diverse exploration of this space under uncertainty.<n>We present a novel method leveraging $textitLarge Language Models$ with $textitMonte-Carlo Tree Search$, exploiting the hierarchical nature of optimization modeling to generate and systematically explore possible formulations
arXiv Detail & Related papers (2024-11-03T20:41:38Z) - LLMOPT: Learning to Define and Solve General Optimization Problems from Scratch [16.174567164068037]
We propose a unified learning-based framework called LLMOPT to boost optimization generalization.<n>LLMOPT constructs the introduced five-element formulation as a universal model for learning to define diverse optimization problem types.<n>LLMOPT is able to model various optimization problem types such as linear/nonlinear programming mixed integer programming.
arXiv Detail & Related papers (2024-10-17T04:37:37Z) - OptiBench Meets ReSocratic: Measure and Improve LLMs for Optimization Modeling [62.19438812624467]
Large language models (LLMs) have exhibited their problem-solving abilities in mathematical reasoning.<n>We propose OptiBench, a benchmark for End-to-end optimization problem-solving with human-readable inputs and outputs.
arXiv Detail & Related papers (2024-07-13T13:27:57Z) - Solving General Natural-Language-Description Optimization Problems with Large Language Models [34.50671063271608]
We propose a novel framework called OptLLM that augments LLMs with external solvers.
OptLLM accepts user queries in natural language, convert them into mathematical formulations and programming codes, and calls the solvers to calculate the results.
Some features of OptLLM framework have been available for trial since June 2023.
arXiv Detail & Related papers (2024-07-09T07:11:10Z) - A Problem-Oriented Perspective and Anchor Verification for Code Optimization [43.28045750932116]
Large language models (LLMs) have shown remarkable capabilities in solving various programming tasks.<n>This paper investigates the capabilities of LLMs in optimizing code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - Language Models for Business Optimisation with a Real World Case Study in Production Scheduling [3.224702011999591]
Large Language Models (LLMs) have demonstrated outstanding performance across different language-related tasks.<n>We present an LLM-based framework for automating problem formulation in business optimisation.
arXiv Detail & Related papers (2023-09-22T23:45:21Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.