RL-U$^2$Net: A Dual-Branch UNet with Reinforcement Learning-Assisted Multimodal Feature Fusion for Accurate 3D Whole-Heart Segmentation
- URL: http://arxiv.org/abs/2508.02557v1
- Date: Mon, 04 Aug 2025 16:12:06 GMT
- Title: RL-U$^2$Net: A Dual-Branch UNet with Reinforcement Learning-Assisted Multimodal Feature Fusion for Accurate 3D Whole-Heart Segmentation
- Authors: Jierui Qu, Jianchun Zhao,
- Abstract summary: We propose a dual-branch U-Net architecture enhanced by reinforcement learning for feature alignment.<n>The model employs a dual-branch U-shaped network to process CT and MRI patches in parallel, and introduces a novel RL-XAlign module.<n> Experimental results on the publicly available MM-WHS 2017 dataset demonstrate that the proposed RL-U$2$Net outperforms existing state-of-the-art methods.
- Score: 0.624829068285122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate whole-heart segmentation is a critical component in the precise diagnosis and interventional planning of cardiovascular diseases. Integrating complementary information from modalities such as computed tomography (CT) and magnetic resonance imaging (MRI) can significantly enhance segmentation accuracy and robustness. However, existing multi-modal segmentation methods face several limitations: severe spatial inconsistency between modalities hinders effective feature fusion; fusion strategies are often static and lack adaptability; and the processes of feature alignment and segmentation are decoupled and inefficient. To address these challenges, we propose a dual-branch U-Net architecture enhanced by reinforcement learning for feature alignment, termed RL-U$^2$Net, designed for precise and efficient multi-modal 3D whole-heart segmentation. The model employs a dual-branch U-shaped network to process CT and MRI patches in parallel, and introduces a novel RL-XAlign module between the encoders. The module employs a cross-modal attention mechanism to capture semantic correspondences between modalities and a reinforcement-learning agent learns an optimal rotation strategy that consistently aligns anatomical pose and texture features. The aligned features are then reconstructed through their respective decoders. Finally, an ensemble-learning-based decision module integrates the predictions from individual patches to produce the final segmentation result. Experimental results on the publicly available MM-WHS 2017 dataset demonstrate that the proposed RL-U$^2$Net outperforms existing state-of-the-art methods, achieving Dice coefficients of 93.1% on CT and 87.0% on MRI, thereby validating the effectiveness and superiority of the proposed approach.
Related papers
- Graph-based Multi-Modal Interaction Lightweight Network for Brain Tumor Segmentation (GMLN-BTS) in Edge Iterative MRI Lesion Localization System (EdgeIMLocSys) [6.451534509235736]
We propose the Edge Iterative MRI Lesion Localization System (EdgeIMLocSys), which integrates Continuous Learning from Human Feedback.<n>Central to this system is the Graph-based Multi-Modal Interaction Lightweight Network for Brain Tumor (GMLN-BTS)<n>Our proposed GMLN-BTS model achieves a Dice score of 85.1% on the BraTS 2017 dataset with only 4.58 million parameters, representing a 98% reduction compared to mainstream 3D Transformer models.
arXiv Detail & Related papers (2025-07-14T07:29:49Z) - CmFNet: Cross-modal Fusion Network for Weakly-supervised Segmentation of Medical Images [15.499686354040774]
We propose CmFNet, a novel 3D weakly supervised cross-modal medical image segmentation approach.<n>CmFNet consists of three main components: a modality-specific feature learning network, a cross-modal feature learning network, and a hybrid-supervised learning strategy.<n>Our approach effectively mitigates overfitting, delivering robust segmentation results.
arXiv Detail & Related papers (2025-06-22T14:02:27Z) - An Arbitrary-Modal Fusion Network for Volumetric Cranial Nerves Tract Segmentation [21.228897192093573]
We propose a novel arbitrary-modal fusion network for volumetric cranial nerves (CNs) tract segmentation, called CNTSeg-v2.<n>Our model encompasses an Arbitrary-Modal Collaboration Module (ACM) designed to effectively extract informative features from other auxiliary modalities.<n>Our CNTSeg-v2 achieves state-of-the-art segmentation performance, outperforming all competing methods.
arXiv Detail & Related papers (2025-05-05T06:00:41Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Towards Synergistic Deep Learning Models for Volumetric Cirrhotic Liver Segmentation in MRIs [1.5228650878164722]
Liver cirrhosis, a leading cause of global mortality, requires precise segmentation of ROIs for effective disease monitoring and treatment planning.
Existing segmentation models often fail to capture complex feature interactions and generalize across diverse datasets.
We propose a novel synergistic theory that leverages complementary latent spaces for enhanced feature interaction modeling.
arXiv Detail & Related papers (2024-08-08T14:41:32Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Large-Kernel Attention for 3D Medical Image Segmentation [14.76728117630242]
In this paper, a novel large- kernel (LK) attention module is proposed to achieve accurate multi-organ segmentation and tumor segmentation.
The advantages of convolution and self-attention are combined in the proposed LK attention module, including local contextual information, long-range dependence, and channel adaptation.
The module also decomposes the LK convolution to optimize the computational cost and can be easily incorporated into FCNs such as U-Net.
arXiv Detail & Related papers (2022-07-19T16:32:55Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.