ReMoMask: Retrieval-Augmented Masked Motion Generation
- URL: http://arxiv.org/abs/2508.02605v1
- Date: Mon, 04 Aug 2025 16:56:35 GMT
- Title: ReMoMask: Retrieval-Augmented Masked Motion Generation
- Authors: Zhengdao Li, Siheng Wang, Zeyu Zhang, Hao Tang,
- Abstract summary: Text-to-Motion (T2M) generation aims to synthesize realistic and semantically aligned human motion sequences from natural language descriptions.<n>We propose ReMoMask, a unified framework integrating three key innovations.<n>A Bidirectional Momentum Text-Motion Model decouples negative sample scale from batch size via momentum queues, substantially improving cross-modal retrieval precision.<n>A Semantic Spatio-temporal Attention mechanism enforces biomechanical constraints during part-level fusion to eliminate asynchronous artifacts.
- Score: 8.471755159366221
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Text-to-Motion (T2M) generation aims to synthesize realistic and semantically aligned human motion sequences from natural language descriptions. However, current approaches face dual challenges: Generative models (e.g., diffusion models) suffer from limited diversity, error accumulation, and physical implausibility, while Retrieval-Augmented Generation (RAG) methods exhibit diffusion inertia, partial-mode collapse, and asynchronous artifacts. To address these limitations, we propose ReMoMask, a unified framework integrating three key innovations: 1) A Bidirectional Momentum Text-Motion Model decouples negative sample scale from batch size via momentum queues, substantially improving cross-modal retrieval precision; 2) A Semantic Spatio-temporal Attention mechanism enforces biomechanical constraints during part-level fusion to eliminate asynchronous artifacts; 3) RAG-Classier-Free Guidance incorporates minor unconditional generation to enhance generalization. Built upon MoMask's RVQ-VAE, ReMoMask efficiently generates temporally coherent motions in minimal steps. Extensive experiments on standard benchmarks demonstrate the state-of-the-art performance of ReMoMask, achieving a 3.88% and 10.97% improvement in FID scores on HumanML3D and KIT-ML, respectively, compared to the previous SOTA method RAG-T2M. Code: https://github.com/AIGeeksGroup/ReMoMask. Website: https://aigeeksgroup.github.io/ReMoMask.
Related papers
- M2DAO-Talker: Harmonizing Multi-granular Motion Decoupling and Alternating Optimization for Talking-head Generation [65.08520614570288]
We reformulate talking head generation into a unified framework comprising video preprocessing, motion representation, and rendering reconstruction.<n>M2DAO-Talker achieves state-of-the-art performance, with the 2.43 dB PSNR improvement in generation quality and 0.64 gain in user-evaluated video realness.
arXiv Detail & Related papers (2025-07-11T04:48:12Z) - MOGO: Residual Quantized Hierarchical Causal Transformer for High-Quality and Real-Time 3D Human Motion Generation [3.6669020073583756]
MOGO is a novel autoregressive framework tailored for efficient and real-time 3D motion generation.<n>MoGO comprises two key components: MoSA-VQ, a motion scale-adaptive residual vector quantization module, and RQHC-Transformer, a residual quantized hierarchical causal transformer.<n>To enhance semantic fidelity, we introduce a text condition alignment mechanism that improves motion decoding under textual control.
arXiv Detail & Related papers (2025-06-06T10:26:54Z) - Towards Robust and Controllable Text-to-Motion via Masked Autoregressive Diffusion [33.9786226622757]
We propose a robust motion generation framework MoMADiff to generate 3D human motion from text descriptions.<n>Our model supports flexible user-provided specification, enabling precise control over both spatial and temporal aspects of motion synthesis.<n>Our method consistently outperforms state-of-the-art models in motion quality, instruction fidelity, and adherence.
arXiv Detail & Related papers (2025-05-16T09:06:15Z) - ReCoM: Realistic Co-Speech Motion Generation with Recurrent Embedded Transformer [58.49950218437718]
We present ReCoM, an efficient framework for generating high-fidelity and generalizable human body motions synchronized with speech.<n>The core innovation lies in the Recurrent Embedded Transformer (RET), which integrates Dynamic Embedding Regularization (DER) into a Vision Transformer (ViT) core architecture.<n>To enhance model robustness, we incorporate the proposed DER strategy, which equips the model with dual capabilities of noise resistance and cross-domain generalization.
arXiv Detail & Related papers (2025-03-27T16:39:40Z) - Reinforced Model Merging [53.84354455400038]
We present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks.<n>By utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times.
arXiv Detail & Related papers (2025-03-27T08:52:41Z) - Motion Anything: Any to Motion Generation [24.769413146731264]
Motion Anything is a multimodal motion generation framework.<n>Our model adaptively encodes multimodal conditions, including text and music, improving controllability.<n>Text-Music-Dance dataset consists of 2,153 pairs of text, music, and dance, making it twice the size of AIST++.
arXiv Detail & Related papers (2025-03-10T06:04:31Z) - Text-guided 3D Human Motion Generation with Keyframe-based Parallel Skip Transformer [62.29951737214263]
Existing algorithms directly generate the full sequence which is expensive and prone to errors.
We propose KeyMotion, that generates plausible human motion sequences corresponding to input text.
We use a Variationalcoder (VAE) with Kullback-Leibler regularization to project the Autoencoder into a latent space.
For the reverse diffusion, we propose a novel Parallel Skip Transformer that performs cross-modal attention between the design latents and text condition.
arXiv Detail & Related papers (2024-05-24T11:12:37Z) - BAMM: Bidirectional Autoregressive Motion Model [14.668729995275807]
Bidirectional Autoregressive Motion Model (BAMM) is a novel text-to-motion generation framework.
BAMM consists of two key components: a motion tokenizer that transforms 3D human motion into discrete tokens in latent space, and a masked self-attention transformer that autoregressively predicts randomly masked tokens.
This feature enables BAMM to simultaneously achieving high-quality motion generation with enhanced usability and built-in motion editability.
arXiv Detail & Related papers (2024-03-28T14:04:17Z) - FineMoGen: Fine-Grained Spatio-Temporal Motion Generation and Editing [56.29102849106382]
FineMoGen is a diffusion-based motion generation and editing framework.
It can synthesize fine-grained motions, with spatial-temporal composition to the user instructions.
FineMoGen further enables zero-shot motion editing capabilities with the aid of modern large language models.
arXiv Detail & Related papers (2023-12-22T16:56:02Z) - DiverseMotion: Towards Diverse Human Motion Generation via Discrete
Diffusion [70.33381660741861]
We present DiverseMotion, a new approach for synthesizing high-quality human motions conditioned on textual descriptions.
We show that our DiverseMotion achieves the state-of-the-art motion quality and competitive motion diversity.
arXiv Detail & Related papers (2023-09-04T05:43:48Z) - ReMoDiffuse: Retrieval-Augmented Motion Diffusion Model [33.64263969970544]
3D human motion generation is crucial for creative industry.
Recent advances rely on generative models with domain knowledge for text-driven motion generation.
We propose ReMoDiffuse, a diffusion-model-based motion generation framework.
arXiv Detail & Related papers (2023-04-03T16:29:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.