Measuring Dependencies between Biological Signals with Temporal Self-supervision, and its Limitations
- URL: http://arxiv.org/abs/2508.02703v1
- Date: Tue, 29 Jul 2025 21:15:13 GMT
- Title: Measuring Dependencies between Biological Signals with Temporal Self-supervision, and its Limitations
- Authors: Evangelos Sariyanidi, John D. Herrington, Lisa Yankowitz, Pratik Chaudhari, Theodore D. Satterthwaite, Casey J. Zampella, Robert T. Schultz, Russell T. Shinohara, Birkan Tunc,
- Abstract summary: Self-supervised concurrence is inspired by the observation that if two signals are dependent, then one should be able to distinguish between temporally aligned vs. misaligned segments.<n>Experiments with fMRI, physiological and behavioral signals show that concurrence is the first approach that can expose relationships across such a wide spectrum of signals.
- Score: 17.74984497708191
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Measuring the statistical dependence between observed signals is a primary tool for scientific discovery. However, biological systems often exhibit complex non-linear interactions that currently cannot be captured without a priori knowledge regarding the nature of dependence. We introduce a self-supervised approach, concurrence, which is inspired by the observation that if two signals are dependent, then one should be able to distinguish between temporally aligned vs. misaligned segments extracted from them. Experiments with fMRI, physiological and behavioral signals show that, to our knowledge, concurrence is the first approach that can expose relationships across such a wide spectrum of signals and extract scientifically relevant differences without ad-hoc parameter tuning or reliance on a priori information, providing a potent tool for scientific discoveries across fields. However, depencencies caused by extraneous factors remain an open problem, thus researchers should validate that exposed relationships truely pertain to the question(s) of interest.
Related papers
- Falsification of Unconfoundedness by Testing Independence of Causal Mechanisms [0.6906005491572399]
We propose an algorithm that can falsify the assumption of no unmeasured confounding in a setting with observational data.<n>Our proposed falsification strategy leverages a key observation that unmeasured confounding can cause observed causal mechanisms to appear dependent.<n>We show that our method is able to efficiently detect confounding on both simulated and semi-synthetic data.
arXiv Detail & Related papers (2025-02-10T08:05:44Z) - Unsupervised Pairwise Causal Discovery on Heterogeneous Data using Mutual Information Measures [49.1574468325115]
Causal Discovery is a technique that tackles the challenge by analyzing the statistical properties of the constituent variables.
We question the current (possibly misleading) baseline results on the basis that they were obtained through supervised learning.
In consequence, we approach this problem in an unsupervised way, using robust Mutual Information measures.
arXiv Detail & Related papers (2024-08-01T09:11:08Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discovery aims to find automated search methods for learning causal structures from observational data.
This thesis focuses on two questions in causal discovery: (i) providing an alternative definition of k-Triangle Faithfulness that (i) is weaker than strong faithfulness when applied to the Gaussian family of distributions, and (ii) under the assumption that the modified version of Strong Faithfulness holds.
arXiv Detail & Related papers (2023-08-15T01:23:42Z) - Learning nonparametric latent causal graphs with unknown interventions [18.6470340274888]
We establish conditions under which latent causal graphs are nonparametrically identifiable.
We do not assume the number of hidden variables is known, and we show that at most one unknown intervention per hidden variable is needed.
arXiv Detail & Related papers (2023-06-05T14:06:35Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Interventional Causal Representation Learning [75.18055152115586]
Causal representation learning seeks to extract high-level latent factors from low-level sensory data.
Can interventional data facilitate causal representation learning?
We show that interventional data often carries geometric signatures of the latent factors' support.
arXiv Detail & Related papers (2022-09-24T04:59:03Z) - Learning latent causal relationships in multiple time series [0.0]
In many systems, the causal relations are embedded in a latent space that is expressed in the observed data as a linear mixture.
A technique for blindly identifying the latent sources is presented.
The proposed technique is unsupervised and can be readily applied to any multiple time series to shed light on the causal relationships underlying the data.
arXiv Detail & Related papers (2022-03-21T00:20:06Z) - Leveraging Pre-Images to Discover Nonlinear Relationships in
Multivariate Environments [0.0]
Causal discovery offers a crucial functionality in scientific discovery using artificial intelligence.
It became apparent that many real-world temporal observations are nonlinearly related to each other.
We show that our method outperforms state-of-the-art causal discovery methods when the observations are restricted by time and are nonlinearly related.
arXiv Detail & Related papers (2021-06-01T22:42:51Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.