DMSC: Dynamic Multi-Scale Coordination Framework for Time Series Forecasting
- URL: http://arxiv.org/abs/2508.02753v2
- Date: Wed, 06 Aug 2025 06:56:14 GMT
- Title: DMSC: Dynamic Multi-Scale Coordination Framework for Time Series Forecasting
- Authors: Haonan Yang, Jianchao Tang, Zhuo Li, Long Lan,
- Abstract summary: Time Series Forecasting (TSF) faces persistent challenges in modeling intricate temporal dependencies across different scales.<n>We propose a novel Dynamic Multi-Scale Coordination Framework (DMSC) with Multi-Scale Patch Decomposition block (EMPD), Triad Interaction Block (TIB) and Adaptive Scale Routing MoE block (ASR-MoE)<n>EMPD is designed as a built-in component to dynamically segment sequences into hierarchical patches with exponentially scaled granularities.<n>TIB then jointly models intra-patch, inter-patch, and cross-variable dependencies within each layer's decomposed representations.
- Score: 14.176801586961286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time Series Forecasting (TSF) faces persistent challenges in modeling intricate temporal dependencies across different scales. Despite recent advances leveraging different decomposition operations and novel architectures based on CNN, MLP or Transformer, existing methods still struggle with static decomposition strategies, fragmented dependency modeling, and inflexible fusion mechanisms, limiting their ability to model intricate temporal dependencies. To explicitly solve the mentioned three problems respectively, we propose a novel Dynamic Multi-Scale Coordination Framework (DMSC) with Multi-Scale Patch Decomposition block (EMPD), Triad Interaction Block (TIB) and Adaptive Scale Routing MoE block (ASR-MoE). Specifically, EMPD is designed as a built-in component to dynamically segment sequences into hierarchical patches with exponentially scaled granularities, eliminating predefined scale constraints through input-adaptive patch adjustment. TIB then jointly models intra-patch, inter-patch, and cross-variable dependencies within each layer's decomposed representations. EMPD and TIB are jointly integrated into layers forming a multi-layer progressive cascade architecture, where coarse-grained representations from earlier layers adaptively guide fine-grained feature extraction in subsequent layers via gated pathways. And ASR-MoE dynamically fuses multi-scale predictions by leveraging specialized global and local experts with temporal-aware weighting. Comprehensive experiments on thirteen real-world benchmarks demonstrate that DMSC consistently maintains state-of-the-art (SOTA) performance and superior computational efficiency for TSF tasks. Code is available at https://github.com/1327679995/DMSC.
Related papers
- Tensor State Space-based Dynamic Multilayer Network Modeling [24.860214033275515]
Existing models often fail to capture such networks' temporal and cross-layer dynamics.<n>This paper introduces a novel State Space Model for Dynamic Multilayer Networks (TSSDMN), utilizing a latent space model framework.<n> Numerical simulations and case studies demonstrate the efficacy of TSSDMN for understanding dynamic multilayer networks.
arXiv Detail & Related papers (2025-06-03T03:58:32Z) - Dynamic Perturbed Adaptive Method for Infinite Task-Conflicting Time Series [0.0]
We formulate time series tasks as input-output mappings under varying objectives, where the same input may yield different outputs.<n>To study this, we construct a synthetic dataset with numerous conflicting subtasks to evaluate adaptation under frequent task shifts.<n>We propose a dynamic perturbed adaptive method based on a trunk-branch architecture, where the trunk evolves slowly to capture long-term structure.
arXiv Detail & Related papers (2025-05-17T08:33:57Z) - FreSca: Scaling in Frequency Space Enhances Diffusion Models [55.75504192166779]
This paper explores frequency-based control within latent diffusion models.<n>We introduce FreSca, a novel framework that decomposes noise difference into low- and high-frequency components.<n>FreSca operates without any model retraining or architectural change, offering model- and task-agnostic control.
arXiv Detail & Related papers (2025-04-02T22:03:11Z) - Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting [26.141054975797868]
We propose a novel Adaptive Multi-Scale Decomposition (AMD) framework for time series forecasting.<n>Our framework decomposes time series into distinct temporal patterns at multiple scales, leveraging the Multi-Scale Decomposable Mixing (MDM) block.<n>Our approach effectively models both temporal and channel dependencies and utilizes autocorrelation to refine multi-scale data integration.
arXiv Detail & Related papers (2024-06-06T05:27:33Z) - A Decoupled Spatio-Temporal Framework for Skeleton-based Action
Segmentation [89.86345494602642]
Existing methods are limited in weak-temporal modeling capability.
We propose a Decoupled Scoupled Framework (DeST) to address the issues.
DeST significantly outperforms current state-of-the-art methods with less computational complexity.
arXiv Detail & Related papers (2023-12-10T09:11:39Z) - HiH: A Multi-modal Hierarchy in Hierarchy Network for Unconstrained Gait Recognition [3.431054404120758]
We present a multi-modal Hierarchy in Hierarchy network (HiH) that integrates silhouette and pose sequences for robust gait recognition.
HiH features a main branch that utilizes Hierarchical Gait Decomposer modules for depth-wise and intra-module hierarchical examination of general gait patterns from silhouette data.
An auxiliary branch, based on 2D joint sequences, enriches the spatial and temporal aspects of gait analysis.
arXiv Detail & Related papers (2023-11-19T03:25:14Z) - Hierarchical Spatio-Temporal Representation Learning for Gait
Recognition [6.877671230651998]
Gait recognition is a biometric technique that identifies individuals by their unique walking styles.
We propose a hierarchical-temporal representation learning framework for extracting gait features from coarse to fine.
Our method outperforms the state-of-the-art while maintaining a reasonable balance between model accuracy and complexity.
arXiv Detail & Related papers (2023-07-19T09:30:00Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
Video-based 3D human pose and shape estimations are evaluated by intra-frame accuracy and inter-frame smoothness.
We propose to structurally decouple the modeling of long-term and short-term correlations in an end-to-end framework, Global-to-Local Transformer (GLoT)
Our GLoT surpasses previous state-of-the-art methods with the lowest model parameters on popular benchmarks, i.e., 3DPW, MPI-INF-3DHP, and Human3.6M.
arXiv Detail & Related papers (2023-03-26T14:57:49Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - SpatioTemporal Focus for Skeleton-based Action Recognition [66.8571926307011]
Graph convolutional networks (GCNs) are widely adopted in skeleton-based action recognition.
We argue that the performance of recent proposed skeleton-based action recognition methods is limited by the following factors.
Inspired by the recent attention mechanism, we propose a multi-grain contextual focus module, termed MCF, to capture the action associated relation information.
arXiv Detail & Related papers (2022-03-31T02:45:24Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
A simple yet effective multi-scale semantics-guided neural network is proposed for skeleton-based action recognition.
MS-SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets.
arXiv Detail & Related papers (2021-11-07T03:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.