Measurement-Induced Entanglement in Conformal Field Theory
- URL: http://arxiv.org/abs/2508.02788v1
- Date: Mon, 04 Aug 2025 18:01:22 GMT
- Title: Measurement-Induced Entanglement in Conformal Field Theory
- Authors: Kabir Khanna, Romain Vasseur,
- Abstract summary: We study measurement-induced entanglement in Tomonaga-Luttinger liquids.<n>We show that the MIE is entirely universal, conformally invariant, and depends on the operator content of the CFT.<n>We show that the MIE for physical quantum measurements is fundamentally different from the entanglement induced by forcing measurement outcomes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Local measurements can radically reshape patterns of many-body entanglement, especially in long-range entangled quantum-critical states. Yet, analytical results addressing the effects of measurements on many-body states remain scarce, and measurements are often approximated as forcing specific measurement outcomes. We study measurement-induced entanglement (MIE) in Tomonaga-Luttinger liquids, a broad family of 1+1d quantum critical states described at low energies by compact free boson conformal field theories (CFT). Measuring the local charge operator, we show that the MIE is entirely universal, conformally invariant, and depends on the operator content of the CFT. Using a replica-trick to address the randomness of the measurement outcomes, we compute the MIE exactly for Tomonaga-Luttinger liquids, in very good agreement with matrix-product state calculations. We show that the MIE for physical quantum measurements is fundamentally different from the entanglement induced by forcing measurement outcomes, and has a natural interpretation in terms of Born averaging over conformally-invariant boundary conditions.
Related papers
- Mixed state deep thermalization [0.0]
Mixed state projected ensemble (MSPE) is a collection of mixed states describing a local region of a quantum many-body system.<n>We study the MSPE generated by solvable (1+1)d dual-unitary quantum circuit evolution.<n>We investigate the quantum information properties of the states composing the ensemble, specifically their capacity to teleport quantum information.
arXiv Detail & Related papers (2025-05-12T17:45:24Z) - Classification of joint quantum measurements based on entanglement cost of localization [42.72938925647165]
We propose a systematic classification of joint measurements based on entanglement cost.
We show how to numerically explore higher levels and construct generalizations to higher dimensions and multipartite settings.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.<n>This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Nonlocality and entanglement in measured critical quantum Ising chains [0.0]
Local degrees of freedom in critical states exhibit long-range entanglement.
We study the effects of measurements, performed with a finite density in space, on the ground state of the one-dimensional transverse-field Ising model at criticality.
arXiv Detail & Related papers (2023-01-19T19:03:37Z) - Measurement operator for quantum nondemolition measurements [6.141422382258041]
We derive a measurement operator corresponding to a quantum nondemolition (QND) measurement of an atomic ensemble.
The quantum measurement operator takes the form of a positive operator valued measure (POVM)
arXiv Detail & Related papers (2023-01-14T12:40:50Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Entanglement detection in quantum many-body systems using entropic
uncertainty relations [0.0]
We study experimentally accessible lower bounds on entanglement measures based on entropic uncertainty relations.
We derive an improved entanglement bound for bipartite systems, which requires measuring joint probability distributions in only two different measurement settings per subsystem.
arXiv Detail & Related papers (2021-01-21T20:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.