FedPromo: Federated Lightweight Proxy Models at the Edge Bring New Domains to Foundation Models
- URL: http://arxiv.org/abs/2508.03356v1
- Date: Tue, 05 Aug 2025 12:00:49 GMT
- Title: FedPromo: Federated Lightweight Proxy Models at the Edge Bring New Domains to Foundation Models
- Authors: Matteo Caligiuri, Francesco Barbato, Donald Shenaj, Umberto Michieli, Pietro Zanuttigh,
- Abstract summary: Federated Learning (FL) is an established paradigm for training deep learning models on decentralized data.<n>We introduce FedPromo, a novel framework that enables efficient adaptation of large-scale foundation models stored on a central server to new domains encountered only by remote clients.
- Score: 16.83959862897466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is an established paradigm for training deep learning models on decentralized data. However, as the size of the models grows, conventional FL approaches often require significant computational resources on client devices, which may not be feasible. We introduce FedPromo, a novel framework that enables efficient adaptation of large-scale foundation models stored on a central server to new domains encountered only by remote clients. Instead of directly training the large model on client devices, FedPromo optimizes lightweight proxy models via FL, significantly reducing computational overhead while maintaining privacy. Our method follows a two-stage process: first, server-side knowledge distillation aligns the representations of a large-scale foundation model (e.g., a transformer) with those of a compact counterpart (e.g., a CNN). Then, the compact model encoder is deployed to client devices, where trainable classifiers are learned locally. These classifiers are subsequently aggregated and seamlessly transferred back to the foundation model, facilitating personalized adaptation without requiring direct access to user data. Through novel regularization strategies, our framework enables decentralized multi-domain learning, balancing performance, privacy, and resource efficiency. Extensive experiments on five image classification benchmarks demonstrate that FedPromo outperforms existing methods while assuming limited-resource clients.
Related papers
- FedConv: A Learning-on-Model Paradigm for Heterogeneous Federated Clients [25.847042398060616]
Federated Learning (FL) facilitates collaborative training of a shared global model without exposing clients' private data.<n>We propose FedConv, a client-friendly FL framework, which minimizes the computation and memory burden on resource-constrained clients.<n>We show that FedConv outperforms state-of-the-art FL systems in terms of model accuracy, computation and communication overhead.
arXiv Detail & Related papers (2025-02-28T01:39:53Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.<n>We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Personalized Hierarchical Split Federated Learning in Wireless Networks [24.664469755746463]
We propose a personalized hierarchical split federated learning (PHSFL) algorithm that is specially designed to achieve better personalization performance.<n>We first perform extensive theoretical analysis to understand the impact of model splitting and hierarchical model aggregations on the global model.<n>Once the global model is trained, we fine-tune each client to obtain the personalized models.
arXiv Detail & Related papers (2024-11-09T02:41:53Z) - One-Shot Heterogeneous Federated Learning with Local Model-Guided Diffusion Models [40.83058938096914]
FedLMG is a one-shot Federated learning method with Local Model-Guided diffusion models.<n>Clients do not need access to any foundation models but only train and upload their local models.
arXiv Detail & Related papers (2023-11-15T11:11:25Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Exploring Parameter-Efficient Fine-Tuning to Enable Foundation Models in Federated Learning [12.839398408791778]
Federated learning (FL) has emerged as a promising paradigm for enabling the collaborative training of models without centralized access to the raw data on local devices.<n>Recent state-of-the-art pre-trained models are getting more capable but also have more parameters, known as the "Foundation Models"<n>Can we find a solution to enable those strong and readily available pre-trained models in FL to achieve excellent performance while simultaneously reducing the communication burden?<n>Specifically, we systemically evaluate the performance of FedPEFT across a variety of client stability, data distribution, and differential privacy settings.
arXiv Detail & Related papers (2022-10-04T16:08:54Z) - No One Left Behind: Inclusive Federated Learning over Heterogeneous
Devices [79.16481453598266]
We propose InclusiveFL, a client-inclusive federated learning method to handle this problem.
The core idea of InclusiveFL is to assign models of different sizes to clients with different computing capabilities.
We also propose an effective method to share the knowledge among multiple local models with different sizes.
arXiv Detail & Related papers (2022-02-16T13:03:27Z) - An Expectation-Maximization Perspective on Federated Learning [75.67515842938299]
Federated learning describes the distributed training of models across multiple clients while keeping the data private on-device.
In this work, we view the server-orchestrated federated learning process as a hierarchical latent variable model where the server provides the parameters of a prior distribution over the client-specific model parameters.
We show that with simple Gaussian priors and a hard version of the well known Expectation-Maximization (EM) algorithm, learning in such a model corresponds to FedAvg, the most popular algorithm for the federated learning setting.
arXiv Detail & Related papers (2021-11-19T12:58:59Z) - Personalized Retrogress-Resilient Framework for Real-World Medical
Federated Learning [8.240098954377794]
We propose a personalized retrogress-resilient framework to produce a superior personalized model for each client.
Our experiments on real-world dermoscopic FL dataset prove that our personalized retrogress-resilient framework outperforms state-of-the-art FL methods.
arXiv Detail & Related papers (2021-10-01T13:24:29Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
Federated learning allows multiple clients to collaboratively learn a globally shared model.
We propose a novel FL framework that uses online Laplace approximation to approximate posteriors on both the client and server side.
We achieve state-of-the-art results on several benchmarks, clearly demonstrating the advantages of the proposed method.
arXiv Detail & Related papers (2021-02-03T08:36:58Z) - Ensemble Distillation for Robust Model Fusion in Federated Learning [72.61259487233214]
Federated Learning (FL) is a machine learning setting where many devices collaboratively train a machine learning model.
In most of the current training schemes the central model is refined by averaging the parameters of the server model and the updated parameters from the client side.
We propose ensemble distillation for model fusion, i.e. training the central classifier through unlabeled data on the outputs of the models from the clients.
arXiv Detail & Related papers (2020-06-12T14:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.