CogBench: A Large Language Model Benchmark for Multilingual Speech-Based Cognitive Impairment Assessment
- URL: http://arxiv.org/abs/2508.03360v1
- Date: Tue, 05 Aug 2025 12:06:16 GMT
- Title: CogBench: A Large Language Model Benchmark for Multilingual Speech-Based Cognitive Impairment Assessment
- Authors: Feng Rui, Zhiyao Luo, Wei Wang, Yuting Song, Yong Liu, Tingting Zhu, Jianqing Li, Xingyao Wang,
- Abstract summary: We propose CogBench, the first benchmark designed to evaluate the cross-lingual and cross-site generalizability of large language models for speech-based cognitive impairment assessment.<n>Our results show that conventional deep learning models degrade substantially when transferred across domains.<n>Our findings offer a critical step toward building clinically useful and linguistically robust speech-based cognitive assessment tools.
- Score: 13.74065648648307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic assessment of cognitive impairment from spontaneous speech offers a promising, non-invasive avenue for early cognitive screening. However, current approaches often lack generalizability when deployed across different languages and clinical settings, limiting their practical utility. In this study, we propose CogBench, the first benchmark designed to evaluate the cross-lingual and cross-site generalizability of large language models (LLMs) for speech-based cognitive impairment assessment. Using a unified multimodal pipeline, we evaluate model performance on three speech datasets spanning English and Mandarin: ADReSSo, NCMMSC2021-AD, and a newly collected test set, CIR-E. Our results show that conventional deep learning models degrade substantially when transferred across domains. In contrast, LLMs equipped with chain-of-thought prompting demonstrate better adaptability, though their performance remains sensitive to prompt design. Furthermore, we explore lightweight fine-tuning of LLMs via Low-Rank Adaptation (LoRA), which significantly improves generalization in target domains. These findings offer a critical step toward building clinically useful and linguistically robust speech-based cognitive assessment tools.
Related papers
- Multilingual Self-Taught Faithfulness Evaluators [11.200203292660758]
Self-Taught Evaluators for Multilingual Faithfulness is a framework that learns exclusively from synthetic multilingual summarization data.<n>Our framework shows improvements over existing baselines, including state-of-the-art English evaluators and machine translation-based approaches.
arXiv Detail & Related papers (2025-07-28T12:01:59Z) - Speech-IFEval: Evaluating Instruction-Following and Quantifying Catastrophic Forgetting in Speech-Aware Language Models [49.1574468325115]
We introduce Speech-IFeval, an evaluation framework designed to assess instruction-following capabilities.<n>Recent SLMs integrate speech perception with large language models (LLMs), often degrading textual capabilities due to speech-centric training.<n>Our findings show that most SLMs struggle with even basic instructions, performing far worse than text-based LLMs.
arXiv Detail & Related papers (2025-05-25T08:37:55Z) - Mechanistic Understanding and Mitigation of Language Confusion in English-Centric Large Language Models [49.09746599881631]
We present the first mechanistic interpretability study of language confusion.<n>We show that confusion points (CPs) are central to this phenomenon.<n>We show that editing a small set of critical neurons, identified via comparative analysis with multilingual-tuned models, substantially mitigates confusion.
arXiv Detail & Related papers (2025-05-22T11:29:17Z) - AdaMCoT: Rethinking Cross-Lingual Factual Reasoning through Adaptive Multilingual Chain-of-Thought [40.16140566668239]
We introduce AdaMCOT, a framework that enhances multilingual factual reasoning.<n>AdaMCOT dynamically routing thought processes in intermediary "thinking languages" before generating target-language responses.<n>Our evaluation demonstrates substantial improvements in both factual reasoning quality and cross-lingual consistency.
arXiv Detail & Related papers (2025-01-27T15:48:57Z) - LMUnit: Fine-grained Evaluation with Natural Language Unit Tests [43.096722878672956]
We introduce natural language unit tests, a paradigm that decomposes response quality into explicit, testable criteria.<n>We show this paradigm significantly improves inter-annotator agreement and enables more effective development.<n> LMUnit achieves state-of-the-art performance on evaluation benchmarks and competitive results on RewardBench.
arXiv Detail & Related papers (2024-12-17T17:01:15Z) - Assessing Dialect Fairness and Robustness of Large Language Models in Reasoning Tasks [68.33068005789116]
We introduce ReDial, a benchmark containing 1.2K+ parallel query pairs in Standardized English and AAVE.<n>We evaluate widely used models, including GPT, Claude, Llama, Mistral, and the Phi model families.<n>Our work establishes a systematic and objective framework for analyzing LLM bias in dialectal queries.
arXiv Detail & Related papers (2024-10-14T18:44:23Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
Supervised fine-tuning (SFT), supervised instruction tuning (SIT) and in-context learning (ICL) are three alternative, de facto standard approaches to few-shot learning.
We present an extensive and systematic comparison of the three approaches, testing them on 6 high- and low-resource languages, three different NLU tasks, and a myriad of language and domain setups.
Our observations show that supervised instruction tuning has the best trade-off between performance and resource requirements.
arXiv Detail & Related papers (2024-03-04T10:48:13Z) - From Classification to Generation: Insights into Crosslingual Retrieval
Augmented ICL [8.065775937617417]
We introduce a novel approach that leverages cross-lingual retrieval-augmented in-context learning (CREA-ICL)
By extracting semantically similar prompts from high-resource languages, we aim to improve the zero-shot performance of multilingual pre-trained language models (MPLMs)
Though our approach yields steady improvements in classification tasks, it faces challenges in generation tasks.
arXiv Detail & Related papers (2023-11-11T15:40:21Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z) - Evaluating Multilingual Text Encoders for Unsupervised Cross-Lingual
Retrieval [51.60862829942932]
We present a systematic empirical study focused on the suitability of the state-of-the-art multilingual encoders for cross-lingual document and sentence retrieval tasks.
For sentence-level CLIR, we demonstrate that state-of-the-art performance can be achieved.
However, the peak performance is not met using the general-purpose multilingual text encoders off-the-shelf', but rather relying on their variants that have been further specialized for sentence understanding tasks.
arXiv Detail & Related papers (2021-01-21T00:15:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.