ParticleSAM: Small Particle Segmentation for Material Quality Monitoring in Recycling Processes
- URL: http://arxiv.org/abs/2508.03490v1
- Date: Tue, 05 Aug 2025 14:20:14 GMT
- Title: ParticleSAM: Small Particle Segmentation for Material Quality Monitoring in Recycling Processes
- Authors: Yu Zhou, Pelle Thielmann, Ayush Chamoli, Bruno Mirbach, Didier Stricker, Jason Rambach,
- Abstract summary: We propose ParticleSAM, an adaptation of the segmentation foundation model to images with small and dense objects.<n>We create a new dense multi-particle dataset simulated from isolated particle images with the assistance of an automated data generation and labeling pipeline.
- Score: 13.068750122261331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The construction industry represents a major sector in terms of resource consumption. Recycled construction material has high reuse potential, but quality monitoring of the aggregates is typically still performed with manual methods. Vision-based machine learning methods could offer a faster and more efficient solution to this problem, but existing segmentation methods are by design not directly applicable to images with hundreds of small particles. In this paper, we propose ParticleSAM, an adaptation of the segmentation foundation model to images with small and dense objects such as the ones often encountered in construction material particles. Moreover, we create a new dense multi-particle dataset simulated from isolated particle images with the assistance of an automated data generation and labeling pipeline. This dataset serves as a benchmark for visual material quality control automation while our segmentation approach has the potential to be valuable in application areas beyond construction where small-particle segmentation is needed. Our experimental results validate the advantages of our method by comparing to the original SAM method both in quantitative and qualitative experiments.
Related papers
- Purifying, Labeling, and Utilizing: A High-Quality Pipeline for Small Object Detection [83.90563802153707]
PLUSNet is a high-quality Small object detection framework.<n>It comprises three components: the Hierarchical Feature (HFP) framework for purifying upstream features, the Multiple Criteria Label Assignment (MCLA) for improving the quality of midstream training samples, and the Frequency Decoupled Head (FDHead) for more effectively exploiting information to accomplish downstream tasks.
arXiv Detail & Related papers (2025-04-29T10:11:03Z) - CRISP: A Framework for Cryo-EM Image Segmentation and Processing with Conditional Random Field [0.0]
We present a pipeline that automatically generates high-quality segmentation maps from cryo-EM data.<n>Our modular framework enables the selection of various segmentation models and loss functions.<n>When trained on a limited set of micrographs, our approach achieves over 90% accuracy, recall, precision, Intersection over Union (IoU) and F1-score on synthetic data.
arXiv Detail & Related papers (2025-02-12T10:44:45Z) - MatSAM: Efficient Extraction of Microstructures of Materials via Visual
Large Model [11.130574172301365]
Segment Anything Model (SAM) is a large visual model with powerful deep feature representation and zero-shot generalization capabilities.
In this paper, we propose MatSAM, a general and efficient microstructure extraction solution based on SAM.
A simple yet effective point-based prompt generation strategy is designed, grounded on the distribution and shape of microstructures.
arXiv Detail & Related papers (2024-01-11T03:18:18Z) - Trajectory-aware Principal Manifold Framework for Data Augmentation and
Image Generation [5.31812036803692]
Many existing methods generate new samples from a parametric distribution, like the Gaussian, with little attention to generate samples along the data manifold in either the input or feature space.
We propose a novel trajectory-aware principal manifold framework to restore the manifold backbone and generate samples along a specific trajectory.
We show that the novel framework is able to extract more compact manifold representation, improve classification accuracy and generate smooth transformation among few samples.
arXiv Detail & Related papers (2023-07-30T07:31:38Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - ParticleSeg3D: A Scalable Out-of-the-Box Deep Learning Segmentation
Solution for Individual Particle Characterization from Micro CT Images in
Mineral Processing and Recycling [1.0442349645874913]
We propose ParticleSeg3D, an instance segmentation method able to extract individual particles from large CT images of particle samples containing different materials.
Our approach is based on the powerful nnU-Net framework, introduces a particle size normalization, uses a border-core representation to enable instance segmentation, and is trained with a large dataset containing particles of numerous different sizes, shapes, and compositions of various materials.
arXiv Detail & Related papers (2023-01-30T22:43:46Z) - Towards Robust Part-aware Instance Segmentation for Industrial Bin
Picking [113.79582950811348]
We formulate a novel part-aware instance segmentation pipeline for industrial bin picking.
We design a part-aware network to predict part masks and part-to-part offsets, followed by a part aggregation module to assemble the recognized parts into instances.
We contribute the first instance segmentation dataset, which contains a variety of industrial objects that are thin and have non-trivial shapes.
arXiv Detail & Related papers (2022-03-05T14:58:05Z) - Learning with Free Object Segments for Long-Tailed Instance Segmentation [15.563842274862314]
We find that an abundance of instance segments can potentially be obtained freely from object-centric im-ages.
Motivated by these insights, we propose FreeSeg for extracting and leveraging these "free" object segments.
FreeSeg achieves state-of-the-art accuracy for segmenting rare object categories.
arXiv Detail & Related papers (2022-02-22T19:06:16Z) - ZeroWaste Dataset: Towards Automated Waste Recycling [51.053682077915546]
We present the first in-the-wild industrial-grade waste detection and segmentation dataset, ZeroWaste.
This dataset contains over1800fully segmented video frames collected from a real waste sorting plant.
We show that state-of-the-art segmentation methods struggle to correctly detect and classify target objects.
arXiv Detail & Related papers (2021-06-04T22:17:09Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot semantic segmentation aims to segment novel-class objects in a query image with only a few annotated examples.
Most of advanced solutions exploit a metric learning framework that performs segmentation through matching each pixel to a learned foreground prototype.
This framework suffers from biased classification due to incomplete construction of sample pairs with the foreground prototype only.
arXiv Detail & Related papers (2021-04-19T11:21:47Z) - From ImageNet to Image Classification: Contextualizing Progress on
Benchmarks [99.19183528305598]
We study how specific design choices in the ImageNet creation process impact the fidelity of the resulting dataset.
Our analysis pinpoints how a noisy data collection pipeline can lead to a systematic misalignment between the resulting benchmark and the real-world task it serves as a proxy for.
arXiv Detail & Related papers (2020-05-22T17:39:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.