CTR-Sink: Attention Sink for Language Models in Click-Through Rate Prediction
- URL: http://arxiv.org/abs/2508.03668v1
- Date: Tue, 05 Aug 2025 17:30:34 GMT
- Title: CTR-Sink: Attention Sink for Language Models in Click-Through Rate Prediction
- Authors: Zixuan Li, Binzong Geng, Jing Xiong, Yong He, Yuxuan Hu, Jian Chen, Dingwei Chen, Xiyu Chang, Liang Zhang, Linjian Mo, Chengming Li, Chuan Yuan, Zhenan Sun,
- Abstract summary: $textitCTR-Sink$ is a novel framework introducing behavior-level attention sinks tailored for recommendation scenarios.<n>Inspired by attention sink theory, it constructs attention focus sinks and dynamically regulates attention aggregation via external information.
- Score: 42.92011330807996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Click-Through Rate (CTR) prediction, a core task in recommendation systems, estimates user click likelihood using historical behavioral data. Modeling user behavior sequences as text to leverage Language Models (LMs) for this task has gained traction, owing to LMs' strong semantic understanding and contextual modeling capabilities. However, a critical structural gap exists: user behavior sequences consist of discrete actions connected by semantically empty separators, differing fundamentally from the coherent natural language in LM pre-training. This mismatch causes semantic fragmentation, where LM attention scatters across irrelevant tokens instead of focusing on meaningful behavior boundaries and inter-behavior relationships, degrading prediction performance. To address this, we propose $\textit{CTR-Sink}$, a novel framework introducing behavior-level attention sinks tailored for recommendation scenarios. Inspired by attention sink theory, it constructs attention focus sinks and dynamically regulates attention aggregation via external information. Specifically, we insert sink tokens between consecutive behaviors, incorporating recommendation-specific signals such as temporal distance to serve as stable attention sinks. To enhance generality, we design a two-stage training strategy that explicitly guides LM attention toward sink tokens and a attention sink mechanism that amplifies inter-sink dependencies to better capture behavioral correlations. Experiments on one industrial dataset and two open-source datasets (MovieLens, Kuairec), alongside visualization results, validate the method's effectiveness across scenarios.
Related papers
- Mitigating Attention Hacking in Preference-Based Reward Modeling via Interaction Distillation [40.79564929465515]
"Interaction Distillation" is a novel training framework for more adequate preference modeling through attention-level optimization.<n>It provides more stable and generalizable reward signals compared to state-of-the-art RM optimization methods.
arXiv Detail & Related papers (2025-08-04T17:06:23Z) - DLF: Enhancing Explicit-Implicit Interaction via Dynamic Low-Order-Aware Fusion for CTR Prediction [71.41414150295702]
We propose a novel framework, Dynamic Low-Order-Aware Fusion (DLF), for modeling click-through rate (CTR) prediction.<n>RLI preserves low-order signals while mitigating redundancy from residual connections, and NAF dynamically integrates explicit and implicit representations at each layer, enhancing information sharing.<n>Experiments on public datasets demonstrate that DLF achieves state-of-the-art performance in CTR prediction, addressing key limitations of existing models.
arXiv Detail & Related papers (2025-05-25T15:05:00Z) - Don't Take Things Out of Context: Attention Intervention for Enhancing Chain-of-Thought Reasoning in Large Language Models [32.71672086718058]
Few-shot Chain-of-Thought (CoT) significantly enhances the reasoning capabilities of large language models (LLMs)<n>We observe that isolated segments, words, or tokens within CoT demonstrations can unexpectedly disrupt the generation process of LLMs.<n>We propose a Few-shot Attention Intervention method (FAI) that dynamically analyzes the attention patterns of demonstrations to accurately identify these tokens.
arXiv Detail & Related papers (2025-03-14T07:46:33Z) - When Attention Sink Emerges in Language Models: An Empirical View [39.36282162213973]
Language Models (LMs) assign significant attention to the first token, even if it is not semantically important.<n>This phenomenon has been widely adopted in applications such as streaming/long context generation, KV cache optimization, inference acceleration, model quantization, and others.<n>We first demonstrate that attention sinks exist universally in LMs with various inputs, even in small models.
arXiv Detail & Related papers (2024-10-14T17:50:28Z) - Long-Sequence Recommendation Models Need Decoupled Embeddings [49.410906935283585]
We identify and characterize a neglected deficiency in existing long-sequence recommendation models.<n>A single set of embeddings struggles with learning both attention and representation, leading to interference between these two processes.<n>We propose the Decoupled Attention and Representation Embeddings (DARE) model, where two distinct embedding tables are learned separately to fully decouple attention and representation.
arXiv Detail & Related papers (2024-10-03T15:45:15Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [70.65910069412944]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.<n>Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)<n>We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - TBIN: Modeling Long Textual Behavior Data for CTR Prediction [15.056265935931377]
Click-through rate (CTR) prediction plays a pivotal role in the success of recommendations.
Inspired by the recent thriving of language models (LMs), a surge of works improve prediction by organizing user behavior data in a textbftextual format.
While promising, these works have to truncate the textual data to reduce the quadratic computational overhead of self-attention in LMs.
In this paper, we propose a textbfTextual textbfBehavior-based textbfInterest Chunking textbfN
arXiv Detail & Related papers (2023-08-09T03:48:41Z) - DELTA: Dynamic Embedding Learning with Truncated Conscious Attention for
CTR Prediction [61.68415731896613]
Click-Through Rate (CTR) prediction is a pivotal task in product and content recommendation.
We propose a model that enables Dynamic Embedding Learning with Truncated Conscious Attention for CTR prediction.
arXiv Detail & Related papers (2023-05-03T12:34:45Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
We propose a novel attention network, named self-modulating attention, that models the complex and non-linearly evolving dynamic user preferences.
We empirically demonstrate the effectiveness of our method on top-N sequential recommendation tasks, and the results on three large-scale real-world datasets show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-30T03:54:11Z) - Attention improves concentration when learning node embeddings [1.2233362977312945]
Given nodes labelled with search query text, we want to predict links to related queries that share products.
Experiments with a range of deep neural architectures show that simple feedforward networks with an attention mechanism perform best for learning embeddings.
We propose an analytically tractable model of query generation, AttEST, that views both products and the query text as vectors embedded in a latent space.
arXiv Detail & Related papers (2020-06-11T21:21:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.