TIR-Diffusion: Diffusion-based Thermal Infrared Image Denoising via Latent and Wavelet Domain Optimization
- URL: http://arxiv.org/abs/2508.03727v1
- Date: Wed, 30 Jul 2025 06:27:32 GMT
- Title: TIR-Diffusion: Diffusion-based Thermal Infrared Image Denoising via Latent and Wavelet Domain Optimization
- Authors: Tai Hyoung Rhee, Dong-guw Lee, Ayoung Kim,
- Abstract summary: We propose a diffusion-based TIR image denoising framework.<n>Our method fine-tunes the model via a novel loss function combining latent-space and discrete wavelet transform (DWT) / dual-tree complex wavelet transform (DTCWT) losses.<n> Experiments on benchmark datasets demonstrate superior performance of our approach compared to state-of-the-art denoising methods.
- Score: 11.970228442183476
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Thermal infrared imaging exhibits considerable potentials for robotic perception tasks, especially in environments with poor visibility or challenging lighting conditions. However, TIR images typically suffer from heavy non-uniform fixed-pattern noise, complicating tasks such as object detection, localization, and mapping. To address this, we propose a diffusion-based TIR image denoising framework leveraging latent-space representations and wavelet-domain optimization. Utilizing a pretrained stable diffusion model, our method fine-tunes the model via a novel loss function combining latent-space and discrete wavelet transform (DWT) / dual-tree complex wavelet transform (DTCWT) losses. Additionally, we implement a cascaded refinement stage to enhance fine details, ensuring high-fidelity denoising results. Experiments on benchmark datasets demonstrate superior performance of our approach compared to state-of-the-art denoising methods. Furthermore, our method exhibits robust zero-shot generalization to diverse and challenging real-world TIR datasets, underscoring its effectiveness for practical robotic deployment.
Related papers
- FD-DiT: Frequency Domain-Directed Diffusion Transformer for Low-Dose CT Reconstruction [3.980622332603746]
Low-dose computed tomography (LDCT) reduces radiation exposure but suffers from image artifacts and loss of detail due to quantum and electronic noise.<n>FD-DiT centers on a diffusion strategy that progressively introduces noise until the distribution statistically aligns with that of LDCT data, followed by denoising processing.<n>A hybrid denoising network is then utilized to optimize the overall data reconstruction process.<n> Experimental results demonstrate that at identical dose levels, LDCT images reconstructed by FD-DiT exhibit superior noise and artifact suppression compared to state-of-the-art methods.
arXiv Detail & Related papers (2025-06-30T02:16:38Z) - DifIISR: A Diffusion Model with Gradient Guidance for Infrared Image Super-Resolution [32.53713932204663]
DifIISR is an infrared image super-resolution diffusion model optimized for visual quality and perceptual performance.<n>We introduce an infrared thermal spectrum distribution regulation to preserve visual fidelity.<n>We incorporate various visual foundational models as the perceptual guidance for downstream visual tasks.
arXiv Detail & Related papers (2025-03-03T05:20:57Z) - WTCL-Dehaze: Rethinking Real-world Image Dehazing via Wavelet Transform and Contrastive Learning [17.129068060454255]
Single image dehazing is essential for applications such as autonomous driving and surveillance.
We propose an enhanced semi-supervised dehazing network that integrates Contrastive Loss and Discrete Wavelet Transform.
Our proposed algorithm achieves superior performance and improved robustness compared to state-of-the-art single image dehazing methods.
arXiv Detail & Related papers (2024-10-07T05:36:11Z) - NIR-Assisted Image Denoising: A Selective Fusion Approach and A Real-World Benchmark Dataset [53.79524776100983]
Leveraging near-infrared (NIR) images to assist visible RGB image denoising shows the potential to address this issue.<n>Existing works still struggle with taking advantage of NIR information effectively for real-world image denoising.<n>We propose an efficient Selective Fusion Module (SFM), which can be plug-and-played into the advanced denoising networks.
arXiv Detail & Related papers (2024-04-12T14:54:26Z) - NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation [86.7260950382448]
We propose a novel approach to correct noise for image validity, NoiseDiffusion.
NoiseDiffusion performs within the noisy image space and injects raw images into these noisy counterparts to address the challenge of information loss.
arXiv Detail & Related papers (2024-03-13T12:32:25Z) - Spatial-and-Frequency-aware Restoration method for Images based on
Diffusion Models [7.947387272047602]
We propose SaFaRI, a spatial-and-frequency-aware diffusion model for Image Restoration (IR)
Our model encourages images to preserve data-fidelity in both the spatial and frequency domains, resulting in enhanced reconstruction quality.
Our thorough evaluation demonstrates that SaFaRI achieves state-of-the-art performance on both the ImageNet datasets and FFHQ datasets.
arXiv Detail & Related papers (2024-01-31T07:11:01Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
This paper proposes DiffPIR, which integrates the traditional plug-and-play method into the diffusion sampling framework.
Compared to plug-and-play IR methods that rely on discriminative Gaussian denoisers, DiffPIR is expected to inherit the generative ability of diffusion models.
arXiv Detail & Related papers (2023-05-15T20:24:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.