LRTuckerRep: Low-rank Tucker Representation Model for Multi-dimensional Data Completion
- URL: http://arxiv.org/abs/2508.03755v1
- Date: Mon, 04 Aug 2025 06:57:50 GMT
- Title: LRTuckerRep: Low-rank Tucker Representation Model for Multi-dimensional Data Completion
- Authors: Wenwu Gong, Lili Yang,
- Abstract summary: Multi-dimensional data completion is a critical problem in computational sciences.<n>We propose a novel Low-Rank Tucker Representation (LRTuckerRep) model that unifies global and local prior within a Tucker decomposition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-dimensional data completion is a critical problem in computational sciences, particularly in domains such as computer vision, signal processing, and scientific computing. Existing methods typically leverage either global low-rank approximations or local smoothness regularization, but each suffers from notable limitations: low-rank methods are computationally expensive and may disrupt intrinsic data structures, while smoothness-based approaches often require extensive manual parameter tuning and exhibit poor generalization. In this paper, we propose a novel Low-Rank Tucker Representation (LRTuckerRep) model that unifies global and local prior modeling within a Tucker decomposition. Specifically, LRTuckerRep encodes low rankness through a self-adaptive weighted nuclear norm on the factor matrices and a sparse Tucker core, while capturing smoothness via a parameter-free Laplacian-based regularization on the factor spaces. To efficiently solve the resulting nonconvex optimization problem, we develop two iterative algorithms with provable convergence guarantees. Extensive experiments on multi-dimensional image inpainting and traffic data imputation demonstrate that LRTuckerRep achieves superior completion accuracy and robustness under high missing rates compared to baselines.
Related papers
- Low-Rank Implicit Neural Representation via Schatten-p Quasi-Norm and Jacobian Regularization [49.158601255093416]
We propose a CP-based low-rank tensor function parameterized by neural networks for implicit neural representation.<n>For smoothness, we propose a regularization term based on the spectral norm of the Jacobian and Hutchinson's trace estimator.<n>Our proposed smoothness regularization is SVD-free and avoids explicit chain rule derivations.
arXiv Detail & Related papers (2025-06-27T11:23:10Z) - Generalized Least Squares Kernelized Tensor Factorization [19.284198191705027]
Generalized Least Squares Kernelized Factorization (GL) framework for tensor completion is presented.<n>GL integrates low-rank factorization with a locally correlated residual process.<n>The proposed framework is evaluated on four real-world datasets across diverse spatial tasks.
arXiv Detail & Related papers (2024-12-09T23:01:04Z) - Pointerformer: Deep Reinforced Multi-Pointer Transformer for the
Traveling Salesman Problem [67.32731657297377]
Traveling Salesman Problem (TSP) is a classic routing optimization problem originally arising in the domain of transportation and logistics.
Recently, Deep Reinforcement Learning has been increasingly employed to solve TSP due to its high inference efficiency.
We propose a novel end-to-end DRL approach, referred to as Pointerformer, based on multi-pointer Transformer.
arXiv Detail & Related papers (2023-04-19T03:48:32Z) - Tucker-O-Minus Decomposition for Multi-view Tensor Subspace Clustering [36.790637575875635]
We propose a new tensor decomposition called Tucker-O-Minus Decomposition (TOMD) for multi-view clustering.
Numerical experiments on six benchmark data sets demonstrate the superiority of our proposed method in terms of F-score, precision, recall, normalized mutual information, adjusted rand index, and accuracy.
arXiv Detail & Related papers (2022-10-23T07:20:22Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Low-Rank and Sparse Enhanced Tucker Decomposition for Tensor Completion [3.498620439731324]
We introduce a unified low-rank and sparse enhanced Tucker decomposition model for tensor completion.
Our model possesses a sparse regularization term to promote a sparse core tensor, which is beneficial for tensor data compression.
It is remarkable that our model is able to deal with different types of real-world data sets, since it exploits the potential periodicity and inherent correlation properties appeared in tensors.
arXiv Detail & Related papers (2020-10-01T12:45:39Z) - Quasi-Newton Solver for Robust Non-Rigid Registration [35.66014845211251]
We propose a formulation for robust non-rigid registration based on a globally smooth robust estimator for data fitting and regularization.
We apply the majorization-minimization algorithm to the problem, which reduces each iteration to solving a simple least-squares problem with L-BFGS.
arXiv Detail & Related papers (2020-04-09T01:45:05Z) - Online stochastic gradient descent on non-convex losses from
high-dimensional inference [2.2344764434954256]
gradient descent (SGD) is a popular algorithm for optimization problems in high-dimensional tasks.
In this paper we produce an estimator of non-trivial correlation from data.
We illustrate our approach by applying it to a set of tasks such as phase retrieval, and estimation for generalized models.
arXiv Detail & Related papers (2020-03-23T17:34:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.