A Comparative Survey of PyTorch vs TensorFlow for Deep Learning: Usability, Performance, and Deployment Trade-offs
- URL: http://arxiv.org/abs/2508.04035v1
- Date: Wed, 06 Aug 2025 02:55:57 GMT
- Title: A Comparative Survey of PyTorch vs TensorFlow for Deep Learning: Usability, Performance, and Deployment Trade-offs
- Authors: Zakariya Ba Alawi,
- Abstract summary: We review each framework's programming paradigm and developer experience, contrasting PyTorch's graph-based approach with PyTorch's dynamic, Pythonic style.<n>We compare model training speeds and inference performance across multiple tasks and data regimes, drawing on recent benchmarks and studies.<n>Our findings indicate that while both frameworks are highly capable for state-of-the-art deep learning, they exhibit distinct trade-offs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive comparative survey of TensorFlow and PyTorch, the two leading deep learning frameworks, focusing on their usability, performance, and deployment trade-offs. We review each framework's programming paradigm and developer experience, contrasting TensorFlow's graph-based (now optionally eager) approach with PyTorch's dynamic, Pythonic style. We then compare model training speeds and inference performance across multiple tasks and data regimes, drawing on recent benchmarks and studies. Deployment flexibility is examined in depth - from TensorFlow's mature ecosystem (TensorFlow Lite for mobile/embedded, TensorFlow Serving, and JavaScript support) to PyTorch's newer production tools (TorchScript compilation, ONNX export, and TorchServe). We also survey ecosystem and community support, including library integrations, industry adoption, and research trends (e.g., PyTorch's dominance in recent research publications versus TensorFlow's broader tooling in enterprise). Applications in computer vision, natural language processing, and other domains are discussed to illustrate how each framework is used in practice. Finally, we outline future directions and open challenges in deep learning framework design, such as unifying eager and graph execution, improving cross-framework interoperability, and integrating compiler optimizations (XLA, JIT) for improved speed. Our findings indicate that while both frameworks are highly capable for state-of-the-art deep learning, they exhibit distinct trade-offs: PyTorch offers simplicity and flexibility favored in research, whereas TensorFlow provides a fuller production-ready ecosystem - understanding these trade-offs is key for practitioners selecting the appropriate tool. We include charts, code snippets, and more than 20 references to academic papers and official documentation to support this comparative analysis
Related papers
- SWE-Flow: Synthesizing Software Engineering Data in a Test-Driven Manner [53.54568352375669]
We introduce **SWE-Flow**, a novel data synthesis framework grounded in Test-Driven Development (TDD)<n>Unlike existing software engineering data that rely on human-submitted issues, **SWE-Flow** automatically infers incremental development steps directly from unit tests.<n>We generated 16,061 training instances and 2,020 test instances from real-world GitHub projects, creating the **SWE-Flow-Eval** benchmark.
arXiv Detail & Related papers (2025-06-10T17:23:33Z) - Comgra: A Tool for Analyzing and Debugging Neural Networks [35.89730807984949]
We introduce comgra, an open source python library for use with PyTorch.
Comgra extracts data about the internal activations of a model and organizes it in a GUI.
It can show both summary statistics and individual data points, compare early and late stages of training, focus on individual samples of interest, and visualize the flow of the gradient through the network.
arXiv Detail & Related papers (2024-07-31T14:57:23Z) - Studying the Impact of TensorFlow and PyTorch Bindings on Machine Learning Software Quality [13.098132379075603]
We study the impact of using bindings in C#, Rust, Python and JavaScript on the software quality.
Our experiments show that a model can be trained in one binding and used for inference in another binding for the same framework without losing accuracy.
arXiv Detail & Related papers (2024-07-07T18:39:27Z) - Green AI: A Preliminary Empirical Study on Energy Consumption in DL
Models Across Different Runtime Infrastructures [56.200335252600354]
It is common practice to deploy pre-trained models on environments distinct from their native development settings.
This led to the introduction of interchange formats such as ONNX, which includes its infrastructure, and ONNX, which work as standard formats.
arXiv Detail & Related papers (2024-02-21T09:18:44Z) - TensorKrowch: Smooth integration of tensor networks in machine learning [46.0920431279359]
We introduceKrowch, an open source Python library built on top of PyTorch.
Krowch allows users to construct any tensor network, train it, and integrate it as a layer in more intricate deep learning models.
arXiv Detail & Related papers (2023-06-14T15:55:19Z) - PyPOTS: A Python Toolkit for Machine Learning on Partially-Observed Time Series [20.491714178518155]
PyPOTS is an open-source library for data mining and analysis.<n>It provides easy access to diverse algorithms categorized into five tasks.<n>PyPOTS is available on PyPI, Anaconda, and Docker.
arXiv Detail & Related papers (2023-05-30T07:57:05Z) - PRODIGY: Enabling In-context Learning Over Graphs [112.19056551153454]
In-context learning is the ability of a pretrained model to adapt to novel and diverse downstream tasks.
We develop PRODIGY, the first pretraining framework that enables in-context learning over graphs.
arXiv Detail & Related papers (2023-05-21T23:16:30Z) - Trieste: Efficiently Exploring The Depths of Black-box Functions with
TensorFlow [50.691232400959656]
Trieste is an open-source Python package for Bayesian optimization and active learning.
Our library enables the plug-and-play of popular models within sequential decision-making loops.
arXiv Detail & Related papers (2023-02-16T17:21:49Z) - Continual Inference: A Library for Efficient Online Inference with Deep
Neural Networks in PyTorch [97.03321382630975]
Continual Inference is a Python library for implementing Continual Inference Networks (CINs) in PyTorch.
We offer a comprehensive introduction to CINs and their implementation in practice, and provide best-practices and code examples for composing complex modules for modern Deep Learning.
arXiv Detail & Related papers (2022-04-07T13:03:09Z) - TensorFlow ManOpt: a library for optimization on Riemannian manifolds [0.3655021726150367]
The adoption of neural networks and deep learning in non-Euclidean domains has been hindered until recently by the lack of scalable and efficient learning frameworks.
We attempt to bridge this gap by proposing ManOpt, a Python library for optimization on Riemannian in terms of machine learning models.
The library is designed with the aim for a seamless integration with the ecosystem, targeting not only research, but also streamlining production machine learning pipelines.
arXiv Detail & Related papers (2021-05-27T10:42:09Z) - How Useful is Self-Supervised Pretraining for Visual Tasks? [133.1984299177874]
We evaluate various self-supervised algorithms across a comprehensive array of synthetic datasets and downstream tasks.
Our experiments offer insights into how the utility of self-supervision changes as the number of available labels grows.
arXiv Detail & Related papers (2020-03-31T16:03:22Z) - TF-Coder: Program Synthesis for Tensor Manipulations [29.46838583290554]
We present a tool called TF-Coder for programming by example in pruning.
We train models to predict operations from features of the input and output tensors and natural language descriptions of tasks.
TF-Coder solves 63 of 70 real-world tasks within 5 minutes, sometimes finding simpler solutions in less time compared to experienced human programmers.
arXiv Detail & Related papers (2020-03-19T22:53:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.