Fine-tuning for Better Few Shot Prompting: An Empirical Comparison for Short Answer Grading
- URL: http://arxiv.org/abs/2508.04063v1
- Date: Wed, 06 Aug 2025 03:52:55 GMT
- Title: Fine-tuning for Better Few Shot Prompting: An Empirical Comparison for Short Answer Grading
- Authors: Joel Walsh, Siddarth Mamidanna, Benjamin Nye, Mark Core, Daniel Auerbach,
- Abstract summary: Fine-tuning methods have historically required large-scale compute clusters inaccessible to most users.<n>New closed-model approaches such as OpenAI's fine-tuning service promise results with as few as 100 examples.<n>We evaluate both of these fine-tuning methods, measuring their interaction with few-shot prompting for automated short answer grading.
- Score: 0.5825410941577593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Research to improve Automated Short Answer Grading has recently focused on Large Language Models (LLMs) with prompt engineering and no- or few-shot prompting to achieve best results. This is in contrast to the fine-tuning approach, which has historically required large-scale compute clusters inaccessible to most users. New closed-model approaches such as OpenAI's fine-tuning service promise results with as few as 100 examples, while methods using open weights such as quantized low-rank adaptive (QLORA) can be used to fine-tune models on consumer GPUs. We evaluate both of these fine-tuning methods, measuring their interaction with few-shot prompting for automated short answer grading (ASAG) with structured (JSON) outputs. Our results show that finetuning with small amounts of data has limited utility for Llama open-weight models, but that fine-tuning methods can outperform few-shot baseline instruction-tuned LLMs for OpenAI's closed models. While our evaluation set is limited, we find some evidence that the observed benefits of finetuning may be impacted by the domain subject matter. Lastly, we observed dramatic improvement with the LLama 3.1 8B-Instruct open-weight model by seeding the initial training examples with a significant amount of cheaply generated synthetic training data.
Related papers
- Satori-SWE: Evolutionary Test-Time Scaling for Sample-Efficient Software Engineering [51.7496756448709]
Language models (LMs) perform well on coding benchmarks but struggle with real-world software engineering tasks.<n>Existing approaches rely on supervised fine-tuning with high-quality data, which is expensive to curate at scale.<n>We propose Test-Time Scaling (EvoScale), a sample-efficient method that treats generation as an evolutionary process.
arXiv Detail & Related papers (2025-05-29T16:15:36Z) - Context-aware Prompt Tuning: Advancing In-Context Learning with Adversarial Methods [69.36397993451742]
This work introduces Context-aware Prompt Tuning (CPT), a method inspired by ICL, PT, and adversarial attacks.
We modify specific context tokens, considering the unique structure of input and output formats.
Inspired by adversarial attacks, we adjust the input based on the labels present in the context, focusing on minimizing, rather than maximizing, the loss.
arXiv Detail & Related papers (2024-10-22T17:45:47Z) - Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models [0.8399688944263842]
Large Language Models (LLMs) have the capability to understand and generate human-like text from input queries.
This study extends this concept to the integration of LLMs within Retrieval-Augmented Generation (RAG) pipelines.
We evaluate the impact of fine-tuning on the LLMs' capacity for data extraction and contextual understanding.
arXiv Detail & Related papers (2024-06-17T04:35:17Z) - Guardrail Baselines for Unlearning in LLMs [33.86316928349476]
Finetuning is a promising approach to 'unlearn' concepts from large language models.
We show that guardrail-based approaches such as prompting and filtering can achieve unlearning results comparable to finetuning.
arXiv Detail & Related papers (2024-03-05T21:19:06Z) - LIMIT: Less Is More for Instruction Tuning Across Evaluation Paradigms [2.249916681499244]
We finetune open-source MPT-7B and MPT-30B models on instruction finetuning datasets of various sizes ranging from 1k to 60k samples.
We find that subsets of 1k-6k instruction finetuning samples are sufficient to achieve good performance on both (1) traditional NLP benchmarks and (2) model-based evaluation.
arXiv Detail & Related papers (2023-11-22T03:37:01Z) - Uncertainty-aware Parameter-Efficient Self-training for Semi-supervised
Language Understanding [38.11411155621616]
We study self-training as one of the predominant semi-supervised learning approaches.
We present UPET, a novel Uncertainty-aware self-Training framework.
We show that UPET achieves a substantial improvement in terms of performance and efficiency.
arXiv Detail & Related papers (2023-10-19T02:18:29Z) - MinPrompt: Graph-based Minimal Prompt Data Augmentation for Few-shot Question Answering [64.6741991162092]
We present MinPrompt, a minimal data augmentation framework for open-domain question answering.
We transform the raw text into a graph structure to build connections between different factual sentences.
We then apply graph algorithms to identify the minimal set of sentences needed to cover the most information in the raw text.
We generate QA pairs based on the identified sentence subset and train the model on the selected sentences to obtain the final model.
arXiv Detail & Related papers (2023-10-08T04:44:36Z) - Parameter-efficient Tuning of Large-scale Multimodal Foundation Model [68.24510810095802]
We propose A graceful prompt framework for cross-modal transfer (Aurora) to overcome these challenges.
Considering the redundancy in existing architectures, we first utilize the mode approximation to generate 0.1M trainable parameters to implement the multimodal prompt tuning.
A thorough evaluation on six cross-modal benchmarks shows that it not only outperforms the state-of-the-art but even outperforms the full fine-tuning approach.
arXiv Detail & Related papers (2023-05-15T06:40:56Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z) - The Power of Scale for Parameter-Efficient Prompt Tuning [4.481348281462904]
"prompt tuning" is a simple mechanism for learning "soft prompts" to condition frozen language models to perform specific downstream tasks.
Our end-to-end learned approach outperforms GPT-3's "few-shot" learning by a large margin.
arXiv Detail & Related papers (2021-04-18T03:19:26Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
A case-based reasoning (CBR) system solves a new problem by retrieving cases' that are similar to the given problem.
In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs)
Our approach predicts attributes for an entity by gathering reasoning paths from similar entities in the KB.
arXiv Detail & Related papers (2020-10-07T17:48:12Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.