DET-GS: Depth- and Edge-Aware Regularization for High-Fidelity 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2508.04099v1
- Date: Wed, 06 Aug 2025 05:37:26 GMT
- Title: DET-GS: Depth- and Edge-Aware Regularization for High-Fidelity 3D Gaussian Splatting
- Authors: Zexu Huang, Min Xu, Stuart Perry,
- Abstract summary: 3D Gaussian Splatting (3DGS) represents a significant advancement in the field of efficient and high-fidelity novel view synthesis.<n>Existing methods often rely on non-local depth regularization, which fails to capture fine-grained structures.<n>We propose DET-GS, a unified depth and edge-aware regularization framework for 3D Gaussian Splatting.
- Score: 5.759434800012218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (3DGS) represents a significant advancement in the field of efficient and high-fidelity novel view synthesis. Despite recent progress, achieving accurate geometric reconstruction under sparse-view conditions remains a fundamental challenge. Existing methods often rely on non-local depth regularization, which fails to capture fine-grained structures and is highly sensitive to depth estimation noise. Furthermore, traditional smoothing methods neglect semantic boundaries and indiscriminately degrade essential edges and textures, consequently limiting the overall quality of reconstruction. In this work, we propose DET-GS, a unified depth and edge-aware regularization framework for 3D Gaussian Splatting. DET-GS introduces a hierarchical geometric depth supervision framework that adaptively enforces multi-level geometric consistency, significantly enhancing structural fidelity and robustness against depth estimation noise. To preserve scene boundaries, we design an edge-aware depth regularization guided by semantic masks derived from Canny edge detection. Furthermore, we introduce an RGB-guided edge-preserving Total Variation loss that selectively smooths homogeneous regions while rigorously retaining high-frequency details and textures. Extensive experiments demonstrate that DET-GS achieves substantial improvements in both geometric accuracy and visual fidelity, outperforming state-of-the-art (SOTA) methods on sparse-view novel view synthesis benchmarks.
Related papers
- Learning Fine-Grained Geometry for Sparse-View Splatting via Cascade Depth Loss [15.425094458647933]
We introduce Hierarchical Depth-Guided Splatting (HDGS), a depth supervision framework that progressively refines geometry from coarse to fine levels.<n>By enforcing multi-scale depth consistency, our method substantially improves structural fidelity in sparse-view scenarios.
arXiv Detail & Related papers (2025-05-28T12:16:42Z) - Intern-GS: Vision Model Guided Sparse-View 3D Gaussian Splatting [95.61137026932062]
Intern-GS is a novel approach to enhance the process of sparse-view Gaussian splatting.<n>We show that Intern-GS achieves state-of-the-art rendering quality across diverse datasets.
arXiv Detail & Related papers (2025-05-27T05:17:49Z) - Steepest Descent Density Control for Compact 3D Gaussian Splatting [72.54055499344052]
3D Gaussian Splatting (3DGS) has emerged as a powerful real-time, high-resolution novel view.<n>We propose a theoretical framework that demystifies and improves density control in 3DGS.<n>We introduce SteepGS, incorporating steepest density control, a principled strategy that minimizes loss while maintaining a compact point cloud.
arXiv Detail & Related papers (2025-05-08T18:41:38Z) - Diffusion-Guided Gaussian Splatting for Large-Scale Unconstrained 3D Reconstruction and Novel View Synthesis [22.767866875051013]
We propose GS-Diff, a novel 3DGS framework guided by a multi-view diffusion model to address limitations of current methods.<n>By generating pseudo-observations conditioned on multi-view inputs, our method transforms under-constrained 3D reconstruction problems into well-posed ones.<n> Experiments on four benchmarks demonstrate that GS-Diff consistently outperforms state-of-the-art baselines by significant margins.
arXiv Detail & Related papers (2025-04-02T17:59:46Z) - FreeSplat++: Generalizable 3D Gaussian Splatting for Efficient Indoor Scene Reconstruction [50.534213038479926]
FreeSplat++ is an alternative approach to large-scale indoor whole-scene reconstruction.<n>Our method with depth-regularized per-scene fine-tuning demonstrates substantial improvements in reconstruction accuracy and a notable reduction in training time.
arXiv Detail & Related papers (2025-03-29T06:22:08Z) - Uncertainty-Aware Normal-Guided Gaussian Splatting for Surface Reconstruction from Sparse Image Sequences [21.120659841877508]
3D Gaussian Splatting (3DGS) has achieved impressive rendering performance in novel view synthesis.<n>We propose Uncertainty-aware Normal-Guided Gaussian Splatting (UNG-GS) to quantify geometric uncertainty within the 3DGS pipeline.<n>UNG-GS significantly outperforms state-of-the-art methods in both sparse and dense sequences.
arXiv Detail & Related papers (2025-03-14T08:18:12Z) - RDG-GS: Relative Depth Guidance with Gaussian Splatting for Real-time Sparse-View 3D Rendering [13.684624443214599]
We present RDG-GS, a novel sparse-view 3D rendering framework with Relative Depth Guidance based on 3D Gaussian Splatting.<n>The core innovation lies in utilizing relative depth guidance to refine the Gaussian field, steering it towards view-consistent spatial geometric representations.<n>Across extensive experiments on Mip-NeRF360, LLFF, DTU, and Blender, RDG-GS demonstrates state-of-the-art rendering quality and efficiency.
arXiv Detail & Related papers (2025-01-19T16:22:28Z) - AGS-Mesh: Adaptive Gaussian Splatting and Meshing with Geometric Priors for Indoor Room Reconstruction Using Smartphones [19.429461194706786]
We propose an approach for joint surface depth and normal refinement of Gaussian Splatting methods for accurate 3D reconstruction of indoor scenes.<n>Our filtering strategy and optimization design demonstrate significant improvements in both mesh estimation and novel-view synthesis.
arXiv Detail & Related papers (2024-11-28T17:04:32Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
We introduce 3D Linear Splatting (3DLS), which replaces Gaussian kernels with linear kernels to achieve sharper and more precise results.<n>3DLS demonstrates state-of-the-art fidelity and accuracy, along with a 30% FPS improvement over baseline 3DGS.
arXiv Detail & Related papers (2024-11-19T11:59:54Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.<n>Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.