Excavate the potential of Single-Scale Features: A Decomposition Network for Water-Related Optical Image Enhancement
- URL: http://arxiv.org/abs/2508.04123v1
- Date: Wed, 06 Aug 2025 06:41:58 GMT
- Title: Excavate the potential of Single-Scale Features: A Decomposition Network for Water-Related Optical Image Enhancement
- Authors: Zheng Cheng, Wenri Wang, Guangyong Chen, Yakun Ju, Yihua Cheng, Zhisong Liu, Yanda Meng, Jintao Song,
- Abstract summary: Single-scale feature extraction can match or surpass the performance of multi-scale methods.<n>SSD-Net combines CNN's local feature extraction capabilities with Transformer's global modeling strengths.
- Score: 22.353926184394002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Underwater image enhancement (UIE) techniques aim to improve visual quality of images captured in aquatic environments by addressing degradation issues caused by light absorption and scattering effects, including color distortion, blurring, and low contrast. Current mainstream solutions predominantly employ multi-scale feature extraction (MSFE) mechanisms to enhance reconstruction quality through multi-resolution feature fusion. However, our extensive experiments demonstrate that high-quality image reconstruction does not necessarily rely on multi-scale feature fusion. Contrary to popular belief, our experiments show that single-scale feature extraction alone can match or surpass the performance of multi-scale methods, significantly reducing complexity. To comprehensively explore single-scale feature potential in underwater enhancement, we propose an innovative Single-Scale Decomposition Network (SSD-Net). This architecture introduces an asymmetrical decomposition mechanism that disentangles input image into clean layer along with degradation layer. The former contains scene-intrinsic information and the latter encodes medium-induced interference. It uniquely combines CNN's local feature extraction capabilities with Transformer's global modeling strengths through two core modules: 1) Parallel Feature Decomposition Block (PFDB), implementing dual-branch feature space decoupling via efficient attention operations and adaptive sparse transformer; 2) Bidirectional Feature Communication Block (BFCB), enabling cross-layer residual interactions for complementary feature mining and fusion. This synergistic design preserves feature decomposition independence while establishing dynamic cross-layer information pathways, effectively enhancing degradation decoupling capacity.
Related papers
- Single Image Reflection Removal via inter-layer Complementarity [63.37693451363996]
We introduce a novel inter-layer complementarity model and an efficient inter-layer complementarity attention mechanism for dual-stream architectures.<n>Our method achieves state-of-the-art separation quality on multiple public datasets while significantly reducing both computational cost and model complexity.
arXiv Detail & Related papers (2025-05-19T02:50:15Z) - UniUIR: Considering Underwater Image Restoration as An All-in-One Learner [49.35128836844725]
We propose a Universal Underwater Image Restoration method, termed as UniUIR.<n>To decouple degradation-specific issues and explore the inter-correlations among various degradations in UIR task, we designed the Mamba Mixture-of-Experts module.<n>This module extracts degradation prior information in both spatial and frequency domains, and adaptively selects the most appropriate task-specific prompts.
arXiv Detail & Related papers (2025-01-22T16:10:42Z) - Mutual Information-driven Triple Interaction Network for Efficient Image
Dehazing [54.168567276280505]
We propose a novel Mutual Information-driven Triple interaction Network (MITNet) for image dehazing.
The first stage, named amplitude-guided haze removal, aims to recover the amplitude spectrum of the hazy images for haze removal.
The second stage, named phase-guided structure refined, devotes to learning the transformation and refinement of the phase spectrum.
arXiv Detail & Related papers (2023-08-14T08:23:58Z) - Efficient Image Super-Resolution with Feature Interaction Weighted Hybrid Network [101.53907377000445]
Lightweight image super-resolution aims to reconstruct high-resolution images from low-resolution images using low computational costs.
Existing methods result in the loss of middle-layer features due to activation functions.
We propose a Feature Interaction Weighted Hybrid Network (FIWHN) to minimize the impact of intermediate feature loss on reconstruction quality.
arXiv Detail & Related papers (2022-12-29T05:57:29Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
We propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network.
We show that CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2022-11-26T02:40:28Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z) - Efficient Re-parameterization Residual Attention Network For
Nonhomogeneous Image Dehazing [4.723586858098229]
ERRA-Net has an impressive speed, processing 1200x1600 HD quality images with an average runtime of 166.11 fps.
We use cascaded MA blocks to extract high-frequency features step by step, and the Multi-layer attention fusion tail combines the shallow and deep features of the model to get the residual of the clean image.
arXiv Detail & Related papers (2021-09-12T10:03:44Z) - Underwater Image Enhancement via Learning Water Type Desensitized
Representations [29.05252230912826]
We present a novel underwater image enhancement (UIE) framework termed SCNet to address the above issues.
SCNet is based on normalization schemes across both spatial and channel dimensions with the key idea of learning water type desensitized features.
Experimental results on two real-world UIE datasets show that the proposed approach can successfully enhance images with diverse water types.
arXiv Detail & Related papers (2021-02-01T07:34:54Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
We propose a dual-branch convolutional neural network to extract base features and recovered features separately.
By decomposing the feature extraction step into two task-independent streams, the dual-branch model can facilitate the training process.
arXiv Detail & Related papers (2020-03-02T13:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.