SelectiveShield: Lightweight Hybrid Defense Against Gradient Leakage in Federated Learning
- URL: http://arxiv.org/abs/2508.04265v1
- Date: Wed, 06 Aug 2025 09:50:39 GMT
- Title: SelectiveShield: Lightweight Hybrid Defense Against Gradient Leakage in Federated Learning
- Authors: Borui Li, Li Yan, Jianmin Liu,
- Abstract summary: Federated Learning (FL) enables collaborative model training on decentralized data but remains vulnerable to gradient leakage attacks.<n>Existing defense mechanisms, such as differential privacy (DP) and homomorphic encryption (HE), often introduce a trade-off between privacy, model utility, and system overhead.<n>We propose SelectiveShield, a lightweight hybrid defense framework that adaptively integrates homomorphic encryption and differential privacy.
- Score: 4.501710235227319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) enables collaborative model training on decentralized data but remains vulnerable to gradient leakage attacks that can reconstruct sensitive user information. Existing defense mechanisms, such as differential privacy (DP) and homomorphic encryption (HE), often introduce a trade-off between privacy, model utility, and system overhead, a challenge that is exacerbated in heterogeneous environments with non-IID data and varying client capabilities. To address these limitations, we propose SelectiveShield, a lightweight hybrid defense framework that adaptively integrates selective homomorphic encryption and differential privacy. SelectiveShield leverages Fisher information to quantify parameter sensitivity, allowing clients to identify critical parameters locally. Through a collaborative negotiation protocol, clients agree on a shared set of the most sensitive parameters for protection via homomorphic encryption. Parameters that are uniquely important to individual clients are retained locally, fostering personalization, while non-critical parameters are protected with adaptive differential privacy noise. Extensive experiments demonstrate that SelectiveShield maintains strong model utility while significantly mitigating gradient leakage risks, offering a practical and scalable defense mechanism for real-world federated learning deployments.
Related papers
- SenseCrypt: Sensitivity-guided Selective Homomorphic Encryption for Joint Federated Learning in Cross-Device Scenarios [7.594528129456989]
Homomorphic Encryption (HE) prevails in securing Federated Learning (FL), but suffers from high overhead and adaptation cost.<n>We propose SenseCrypt, a Sensitivity-guided selective Homomorphic EnCryption framework, to adaptively balance security and HE overhead per cross-device FL client.<n>Experiments demonstrate that SenseCrypt ensures security against the state-of-the-art inversion attacks, while achieving normal model accuracy as on IID data, and reducing training time by 58.4%-88.7% as compared to traditional HE methods.
arXiv Detail & Related papers (2025-08-06T05:42:41Z) - Machine Learning with Privacy for Protected Attributes [56.44253915927481]
We refine the definition of differential privacy (DP) to create a more general and flexible framework that we call feature differential privacy (FDP)<n>Our definition is simulation-based and allows for both addition/removal and replacement variants of privacy, and can handle arbitrary separation of protected and non-protected features.<n>We apply our framework to various machine learning tasks and show that it can significantly improve the utility of DP-trained models when public features are available.
arXiv Detail & Related papers (2025-06-24T17:53:28Z) - Secure Distributed Learning for CAVs: Defending Against Gradient Leakage with Leveled Homomorphic Encryption [0.0]
Homomorphic Encryption (HE) offers a promising alternative to Differential Privacy (DP) and Secure Multi-Party Computation (SMPC)<n>We evaluate various HE schemes to identify the most suitable for Federated Learning (FL) in resource-constrained environments.<n>We develop a full HE-based FL pipeline that effectively mitigates Deep Leakage from Gradients (DLG) attacks while preserving model accuracy.
arXiv Detail & Related papers (2025-06-09T16:12:18Z) - SHE-LoRA: Selective Homomorphic Encryption for Federated Tuning with Heterogeneous LoRA [12.458373666338082]
SHE-LoRA integrates selective homomorphic encryption and low-rank adaptation.<n>We show that SHE-LoRA maintains performance comparable to non-private baselines.<n>It also significantly reduces communication overhead by 94.901% and encryption overhead by 99.829%, compared to baseline.
arXiv Detail & Related papers (2025-05-27T11:36:18Z) - PWC-MoE: Privacy-Aware Wireless Collaborative Mixture of Experts [59.5243730853157]
Large language models (LLMs) hosted on cloud servers alleviate the computational and storage burdens on local devices but raise privacy concerns.<n>Small language models (SLMs) running locally enhance privacy but suffer from limited performance on complex tasks.<n>We propose a privacy-aware wireless collaborative mixture of experts (PWC-MoE) framework to balance computational cost, performance, and privacy protection under bandwidth constraints.
arXiv Detail & Related papers (2025-05-13T16:27:07Z) - Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG)<n>FedE4RAG facilitates collaborative training of client-side RAG retrieval models.<n>We apply homomorphic encryption within federated learning to safeguard model parameters.
arXiv Detail & Related papers (2025-04-27T04:26:02Z) - FedRand: Enhancing Privacy in Federated Learning with Randomized LoRA Subparameter Updates [58.18162789618869]
Federated Learning (FL) is a widely used framework for training models in a decentralized manner.<n>We propose the FedRand framework, which avoids disclosing the full set of client parameters.<n>We empirically validate that FedRand improves robustness against MIAs compared to relevant baselines.
arXiv Detail & Related papers (2025-03-10T11:55:50Z) - A New Federated Learning Framework Against Gradient Inversion Attacks [17.3044168511991]
Federated Learning (FL) aims to protect data privacy by enabling clients to collectively train machine learning models without sharing their raw data.<n>Recent studies demonstrate that information exchanged during FL is subject to Gradient Inversion Attacks (GIA)
arXiv Detail & Related papers (2024-12-10T04:53:42Z) - RecUP-FL: Reconciling Utility and Privacy in Federated Learning via
User-configurable Privacy Defense [9.806681555309519]
Federated learning (FL) allows clients to collaboratively train a model without sharing their private data.
Recent studies have shown that private information can still be leaked through shared gradients.
We propose a user-configurable privacy defense, RecUP-FL, that can better focus on the user-specified sensitive attributes.
arXiv Detail & Related papers (2023-04-11T10:59:45Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
Federated learning is a distributed framework designed to address privacy concerns.<n>It introduces new attack surfaces, which are especially prone when data is non-Independently and Identically Distributed.<n>We present FedCC, a simple yet effective novel defense algorithm against model poisoning attacks.
arXiv Detail & Related papers (2022-12-05T01:52:32Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
We consider privacy aspects of wireless federated learning with Over-the-Air (OtA) transmission of gradient updates from multiple users/agents to an edge server.
Traditional perturbation-based methods provide privacy protection while sacrificing the training accuracy.
In this work, we aim at minimizing privacy leakage to the adversary and the degradation of model accuracy at the edge server.
arXiv Detail & Related papers (2022-10-05T13:13:35Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.