Synthetic POMDPs to Challenge Memory-Augmented RL: Memory Demand Structure Modeling
- URL: http://arxiv.org/abs/2508.04282v1
- Date: Wed, 06 Aug 2025 10:13:17 GMT
- Title: Synthetic POMDPs to Challenge Memory-Augmented RL: Memory Demand Structure Modeling
- Authors: Yongyi Wang, Lingfeng Li, Bozhou Chen, Ang Li, Hanyu Liu, Qirui Zheng, Xionghui Yang, Wenxin Li,
- Abstract summary: Recent research has developed benchmarks for memory-augmented reinforcement learning (RL) algorithms.<n>POMDP environments where agents depend on past observations to make decisions.<n>Our work clarifies the challenges of memory-augmented RL in solving POMDPs, provides guidelines for analyzing and designing POMDP environments, and offers empirical support for selecting memory models in RL tasks.
- Score: 6.279650855031215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research has developed benchmarks for memory-augmented reinforcement learning (RL) algorithms, providing Partially Observable Markov Decision Process (POMDP) environments where agents depend on past observations to make decisions. While many benchmarks incorporate sufficiently complex real-world problems, they lack controllability over the degree of challenges posed to memory models. In contrast, synthetic environments enable fine-grained manipulation of dynamics, making them critical for detailed and rigorous evaluation of memory-augmented RL. Our study focuses on POMDP synthesis with three key contributions: 1. A theoretical framework for analyzing POMDPs, grounded in Memory Demand Structure (MDS), transition invariance, and related concepts; 2. A methodology leveraging linear process dynamics, state aggregation, and reward redistribution to construct customized POMDPs with predefined properties; 3. Empirically validated series of POMDP environments with increasing difficulty levels, designed based on our theoretical insights. Our work clarifies the challenges of memory-augmented RL in solving POMDPs, provides guidelines for analyzing and designing POMDP environments, and offers empirical support for selecting memory models in RL tasks.
Related papers
- Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs [51.21041884010009]
Ring-lite is a Mixture-of-Experts (MoE)-based large language model optimized via reinforcement learning (RL)<n>Our approach matches the performance of state-of-the-art (SOTA) small-scale reasoning models on challenging benchmarks.
arXiv Detail & Related papers (2025-06-17T17:12:34Z) - Towards Cost Sensitive Decision Making [14.279123976398926]
In this work, we consider RL models that may actively acquire features from the environment to improve the decision quality and certainty.
We propose the Active-Acquisition POMDP and identify two types of the acquisition process for different application domains.
In order to assist the agent in the actively-acquired partially-observed environment and alleviate the exploration-exploitation dilemma, we develop a model-based approach.
arXiv Detail & Related papers (2024-10-04T19:48:23Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Constrained Reinforcement Learning with Average Reward Objective: Model-Based and Model-Free Algorithms [34.593772931446125]
monograph focuses on the exploration of various model-based and model-free approaches for Constrained within the context of average reward Markov Decision Processes (MDPs)
The primal-dual policy gradient-based algorithm is explored as a solution for constrained MDPs.
arXiv Detail & Related papers (2024-06-17T12:46:02Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - POMDP inference and robust solution via deep reinforcement learning: An
application to railway optimal maintenance [0.7046417074932257]
We propose a combined framework for inference and robust solution of POMDPs via deep RL.
First, all transition and observation model parameters are jointly inferred via Markov Chain Monte Carlo sampling of a hidden Markov model.
The POMDP with uncertain parameters is then solved via deep RL techniques with the parameter distributions incorporated into the solution via domain randomization.
arXiv Detail & Related papers (2023-07-16T15:44:58Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
We study sample efficient reinforcement learning (RL) under the general framework of interactive decision making.
We propose a novel complexity measure, generalized eluder coefficient (GEC), which characterizes the fundamental tradeoff between exploration and exploitation.
We show that RL problems with low GEC form a remarkably rich class, which subsumes low Bellman eluder dimension problems, bilinear class, low witness rank problems, PO-bilinear class, and generalized regular PSR.
arXiv Detail & Related papers (2022-11-03T16:42:40Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Policy Information Capacity: Information-Theoretic Measure for Task
Complexity in Deep Reinforcement Learning [83.66080019570461]
We propose two environment-agnostic, algorithm-agnostic quantitative metrics for task difficulty.
We show that these metrics have higher correlations with normalized task solvability scores than a variety of alternatives.
These metrics can also be used for fast and compute-efficient optimizations of key design parameters.
arXiv Detail & Related papers (2021-03-23T17:49:50Z) - Memory-based Deep Reinforcement Learning for POMDP [7.137228786549488]
Long-Short-Term-Memory-based Twin Delayed Deep Deterministic Policy Gradient (LSTM-TD3)
Our results demonstrate the significant advantages of the memory component in addressing Partially Observable MDPs.
arXiv Detail & Related papers (2021-02-24T15:25:13Z) - DeepAveragers: Offline Reinforcement Learning by Solving Derived Non-Parametric MDPs [33.07594285100664]
We study an approach to offline reinforcement learning (RL) based on optimally solving finitely-represented MDPs derived from a static dataset of experience.<n>Our main contribution is to introduce the Deep Averagers with Costs MDP (DAC-MDP) and to investigate its solutions for offline RL.
arXiv Detail & Related papers (2020-10-18T00:11:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.