Emotion Detection Using Conditional Generative Adversarial Networks (cGAN): A Deep Learning Approach
- URL: http://arxiv.org/abs/2508.04481v1
- Date: Wed, 06 Aug 2025 14:32:22 GMT
- Title: Emotion Detection Using Conditional Generative Adversarial Networks (cGAN): A Deep Learning Approach
- Authors: Anushka Srivastava,
- Abstract summary: This paper presents a deep learning-based approach to emotion detection using Conditional Generative Adversarial Networks (cGANs)<n>Unlike traditional unimodal techniques that rely on a single data type, we explore a multimodal framework integrating text, audio, and facial expressions.<n>The proposed cGAN architecture is trained to generate synthetic emotion-rich data and improve classification accuracy across multiple modalities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a deep learning-based approach to emotion detection using Conditional Generative Adversarial Networks (cGANs). Unlike traditional unimodal techniques that rely on a single data type, we explore a multimodal framework integrating text, audio, and facial expressions. The proposed cGAN architecture is trained to generate synthetic emotion-rich data and improve classification accuracy across multiple modalities. Our experimental results demonstrate significant improvements in emotion recognition performance compared to baseline models. This work highlights the potential of cGANs in enhancing human-computer interaction systems by enabling more nuanced emotional understanding.
Related papers
- Bridging Cognition and Emotion: Empathy-Driven Multimodal Misinformation Detection [56.644686934050576]
Social media has become a major conduit for information dissemination, yet it also facilitates the rapid spread of misinformation.<n>Traditional misinformation detection methods primarily focus on surface-level features, overlooking the crucial roles of human empathy in the propagation process.<n>We propose the Dual-Aspect Empathy Framework (DAE), which integrates cognitive and emotional empathy to analyze misinformation from both the creator and reader perspectives.
arXiv Detail & Related papers (2025-04-24T07:48:26Z) - Alleviating Catastrophic Forgetting in Facial Expression Recognition with Emotion-Centered Models [49.3179290313959]
The proposed method, emotion-centered generative replay (ECgr), tackles this challenge by integrating synthetic images from generative adversarial networks.
ECgr incorporates a quality assurance algorithm to ensure the fidelity of generated images.
The experimental results on four diverse facial expression datasets demonstrate that incorporating images generated by our pseudo-rehearsal method enhances training on the targeted dataset and the source dataset.
arXiv Detail & Related papers (2024-04-18T15:28:34Z) - EMERSK -- Explainable Multimodal Emotion Recognition with Situational
Knowledge [0.0]
We present Explainable Multimodal Emotion Recognition with Situational Knowledge (EMERSK)
EMERSK is a general system for human emotion recognition and explanation using visual information.
Our system can handle multiple modalities, including facial expressions, posture, and gait in a flexible and modular manner.
arXiv Detail & Related papers (2023-06-14T17:52:37Z) - A Comparative Study of Data Augmentation Techniques for Deep Learning
Based Emotion Recognition [11.928873764689458]
We conduct a comprehensive evaluation of popular deep learning approaches for emotion recognition.
We show that long-range dependencies in the speech signal are critical for emotion recognition.
Speed/rate augmentation offers the most robust performance gain across models.
arXiv Detail & Related papers (2022-11-09T17:27:03Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - Attentive Cross-modal Connections for Deep Multimodal Wearable-based
Emotion Recognition [7.559720049837459]
We present a novel attentive cross-modal connection to share information between convolutional neural networks.
Specifically, these connections improve emotion classification by sharing intermediate representations among EDA and ECG.
Our experiments show that the proposed approach is capable of learning strong multimodal representations and outperforms a number of baselines methods.
arXiv Detail & Related papers (2021-08-04T18:40:32Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
We introduce a new classification system that utilizes brain connectivity with a CNN and validate its effectiveness via the emotional video classification.
The level of concentration of the brain connectivity related to the emotional property of the target video is correlated with classification performance.
arXiv Detail & Related papers (2021-01-18T13:28:08Z) - Cross-individual Recognition of Emotions by a Dynamic Entropy based on
Pattern Learning with EEG features [2.863100352151122]
We propose a deep-learning framework denoted as a dynamic entropy-based pattern learning (DEPL) to abstract informative indicators pertaining to the neurophysiological features among multiple individuals.
DEPL enhanced the capability of representations generated by a deep convolutional neural network by modelling the interdependencies between the cortical locations of dynamical entropy based features.
arXiv Detail & Related papers (2020-09-26T07:22:07Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.