One Model For All: Partial Diffusion for Unified Try-On and Try-Off in Any Pose
- URL: http://arxiv.org/abs/2508.04559v1
- Date: Wed, 06 Aug 2025 15:46:01 GMT
- Title: One Model For All: Partial Diffusion for Unified Try-On and Try-Off in Any Pose
- Authors: Jinxi Liu, Zijian He, Guangrun Wang, Guanbin Li, Liang Lin,
- Abstract summary: We introduce textbfOMFA (emphOne Model For All), a unified diffusion framework for both virtual try-on and try-off.<n>The framework is entirely mask-free and requires only a single portrait and a target pose as input.<n>It achieves state-of-the-art results on both try-on and try-off tasks, providing a practical and generalizable solution for virtual garment synthesis.
- Score: 99.056324701764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent diffusion-based approaches have made significant advances in image-based virtual try-on, enabling more realistic and end-to-end garment synthesis. However, most existing methods remain constrained by their reliance on exhibition garments and segmentation masks, as well as their limited ability to handle flexible pose variations. These limitations reduce their practicality in real-world scenarios-for instance, users cannot easily transfer garments worn by one person onto another, and the generated try-on results are typically restricted to the same pose as the reference image. In this paper, we introduce \textbf{OMFA} (\emph{One Model For All}), a unified diffusion framework for both virtual try-on and try-off that operates without the need for exhibition garments and supports arbitrary poses. For example, OMFA enables removing garments from a source person (try-off) and transferring them onto a target person (try-on), while also allowing the generated target to appear in novel poses-even without access to multi-pose images of that person. OMFA is built upon a novel \emph{partial diffusion} strategy that selectively applies noise and denoising to individual components of the joint input-such as the garment, the person image, or the face-enabling dynamic subtask control and efficient bidirectional garment-person transformation. The framework is entirely mask-free and requires only a single portrait and a target pose as input, making it well-suited for real-world applications. Additionally, by leveraging SMPL-X-based pose conditioning, OMFA supports multi-view and arbitrary-pose try-on from just one image. Extensive experiments demonstrate that OMFA achieves state-of-the-art results on both try-on and try-off tasks, providing a practical and generalizable solution for virtual garment synthesis. The project page is here: https://onemodelforall.github.io/.
Related papers
- OmniVTON: Training-Free Universal Virtual Try-On [53.31945401098557]
Image-based Virtual Try-On (VTON) techniques rely on either supervised in-shop approaches, or unsupervised in-the-wild methods, which improve adaptability but remain constrained by data biases and limited universality.<n>We propose OmniVTON, the first training-free universal VTON framework that decouples garment and pose conditioning to achieve both texture fidelity and pose consistency across diverse settings.
arXiv Detail & Related papers (2025-07-20T16:37:53Z) - MF-VITON: High-Fidelity Mask-Free Virtual Try-On with Minimal Input [69.33864837012202]
We propose a Mask-Free VITON framework that achieves realistic VITON using only a single person image and a target garment.<n>We leverage existing Mask-based VITON models to synthesize a high-quality dataset.<n>This dataset contains diverse, realistic pairs of person images and corresponding garments, augmented with varied backgrounds to mimic real-world scenarios.
arXiv Detail & Related papers (2025-03-11T17:40:59Z) - Any2AnyTryon: Leveraging Adaptive Position Embeddings for Versatile Virtual Clothing Tasks [31.461116368933165]
Image-based virtual try-on (VTON) aims to generate a virtual try-on result by transferring an input garment onto a target person's image.<n>The scarcity of paired garment-model data makes it challenging for existing methods to achieve high generalization and quality in VTON.<n>We propose Any2AnyTryon, which can generate try-on results based on different textual instructions and model garment images.
arXiv Detail & Related papers (2025-01-27T09:33:23Z) - Texture-Preserving Diffusion Models for High-Fidelity Virtual Try-On [29.217423805933727]
Diffusion model-based approaches have recently become popular, as they are excellent at image synthesis tasks.
We propose an Texture-Preserving Diffusion (TPD) model for virtual try-on, which enhances the fidelity of the results.
Second, we propose a novel diffusion-based method that predicts a precise inpainting mask based on the person and reference garment images.
arXiv Detail & Related papers (2024-04-01T12:43:22Z) - Improving Diffusion Models for Authentic Virtual Try-on in the Wild [53.96244595495942]
This paper considers image-based virtual try-on, which renders an image of a person wearing a curated garment.
We propose a novel diffusion model that improves garment fidelity and generates authentic virtual try-on images.
We present a customization method using a pair of person-garment images, which significantly improves fidelity and authenticity.
arXiv Detail & Related papers (2024-03-08T08:12:18Z) - PFDM: Parser-Free Virtual Try-on via Diffusion Model [28.202996582963184]
We propose a free virtual try-on method based on the diffusion model (PFDM)
Given two images, PFDM can "wear" garments on the target person seamlessly by implicitly warping without any other information.
Experiments demonstrate that our proposed PFDM can successfully handle complex images, and outperform both state-of-the-art-free and high-fidelity-based models.
arXiv Detail & Related papers (2024-02-05T14:32:57Z) - Single Stage Warped Cloth Learning and Semantic-Contextual Attention Feature Fusion for Virtual TryOn [5.790630195329777]
Image-based virtual try-on aims to fit an in-shop garment onto a clothed person image.
Garment warping, which aligns the target garment with the corresponding body parts in the person image, is a crucial step in achieving this goal.
We propose a novel single-stage framework that implicitly learns the same without explicit multi-stage learning.
arXiv Detail & Related papers (2023-10-08T06:05:01Z) - HumanGAN: A Generative Model of Humans Images [78.6284090004218]
We present a generative model for images of dressed humans offering control over pose, local body part appearance and garment style.
Our model encodes part-based latent appearance vectors in a normalized pose-independent space and warps them to different poses, it preserves body and clothing appearance under varying posture.
arXiv Detail & Related papers (2021-03-11T19:00:38Z) - Style and Pose Control for Image Synthesis of Humans from a Single
Monocular View [78.6284090004218]
StylePoseGAN is a non-controllable generator to accept conditioning of pose and appearance separately.
Our network can be trained in a fully supervised way with human images to disentangle pose, appearance and body parts.
StylePoseGAN achieves state-of-the-art image generation fidelity on common perceptual metrics.
arXiv Detail & Related papers (2021-02-22T18:50:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.