InfoQ: Mixed-Precision Quantization via Global Information Flow
- URL: http://arxiv.org/abs/2508.04753v1
- Date: Wed, 06 Aug 2025 11:07:49 GMT
- Title: InfoQ: Mixed-Precision Quantization via Global Information Flow
- Authors: Mehmet Emre Akbulut, Hazem Hesham Yousef Shalby, Fabrizio Pittorino, Manuel Roveri,
- Abstract summary: Mixed-precision quantization (MPQ) is crucial for deploying deep neural networks on resource-constrained devices.<n>We introduce InfoQ, a novel framework for MPQ that is training-free in the bit-width search phase.
- Score: 3.4096951613673068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mixed-precision quantization (MPQ) is crucial for deploying deep neural networks on resource-constrained devices, but finding the optimal bit-width for each layer represents a complex combinatorial optimization problem. Current state-of-the-art methods rely on computationally expensive search algorithms or local sensitivity heuristic proxies like the Hessian, which fail to capture the cascading global effects of quantization error. In this work, we argue that the quantization sensitivity of a layer should not be measured by its local properties, but by its impact on the information flow throughout the entire network. We introduce InfoQ, a novel framework for MPQ that is training-free in the bit-width search phase. InfoQ assesses layer sensitivity by quantizing each layer at different bit-widths and measuring, through a single forward pass, the resulting change in mutual information in the subsequent layers. This quantifies how much each layer quantization impacts the network information flow. The resulting scores are used to formulate bit-width allocation as an integer linear programming problem, which is solved efficiently to minimize total sensitivity under a given budget (e.g., model size or BitOps). Our retraining-free search phase provides a superior search-time/accuracy trade-off (using two orders of magnitude less data compared to state-of-the-art methods such as LIMPQ), while yielding up to a 1% accuracy improvement for MobileNetV2 and ResNet18 on ImageNet at high compression rates (14X and 10.66X).
Related papers
- Reducing Storage of Pretrained Neural Networks by Rate-Constrained Quantization and Entropy Coding [56.066799081747845]
The ever-growing size of neural networks poses serious challenges on resource-constrained devices.<n>We propose a novel post-training compression framework that combines rate-aware quantization with entropy coding.<n>Our method allows for very fast decoding and is compatible with arbitrary quantization grids.
arXiv Detail & Related papers (2025-05-24T15:52:49Z) - Mixed-Precision Quantization for Deep Vision Models with Integer Quadratic Programming [7.0146264551420066]
Quantization is a widely used technique to compress neural networks.<n>MPQ addresses this by assigning varied bit-widths to layers, optimizing the accuracy-efficiency trade-off.<n>We introduce CLADO, a practical sensitivity-based MPQ algorithm that captures crosslayer dependency of quantization error.
arXiv Detail & Related papers (2023-07-11T15:56:00Z) - Automatic Network Adaptation for Ultra-Low Uniform-Precision
Quantization [6.1664476076961146]
Uniform-precision neural network quantization has gained popularity since it simplifies densely packed arithmetic unit for high computing capability.
It ignores heterogeneous sensitivity to the impact of quantization errors across the layers, resulting in sub-optimal inference.
This work proposes a novel neural architecture search called neural channel expansion that adjusts the network structure to alleviate accuracy degradation from ultra-low uniform-precision quantization.
arXiv Detail & Related papers (2022-12-21T09:41:25Z) - CADyQ: Content-Aware Dynamic Quantization for Image Super-Resolution [55.50793823060282]
We propose a novel Content-Aware Dynamic Quantization (CADyQ) method for image super-resolution (SR) networks.
CADyQ allocates optimal bits to local regions and layers adaptively based on the local contents of an input image.
The pipeline has been tested on various SR networks and evaluated on several standard benchmarks.
arXiv Detail & Related papers (2022-07-21T07:50:50Z) - Green, Quantized Federated Learning over Wireless Networks: An
Energy-Efficient Design [68.86220939532373]
The finite precision level is captured through the use of quantized neural networks (QNNs) that quantize weights and activations in fixed-precision format.
The proposed FL framework can reduce energy consumption until convergence by up to 70% compared to a baseline FL algorithm.
arXiv Detail & Related papers (2022-07-19T16:37:24Z) - Arbitrary Bit-width Network: A Joint Layer-Wise Quantization and
Adaptive Inference Approach [38.03309300383544]
We propose to feed different data samples with varying quantization schemes to achieve a data-dependent dynamic inference, at a fine-grained layer level.
We present the Arbitrary Bit-width Network (ABN), where the bit-widths of a single deep network can change at runtime for different data samples, with a layer-wise granularity.
On ImageNet classification, we achieve 1.1% top1 accuracy improvement while saving 36.2% BitOps.
arXiv Detail & Related papers (2022-04-21T09:36:43Z) - Mixed-Precision Neural Network Quantization via Learned Layer-wise
Importance [50.00102219630088]
Mixed-precision quantization (MPQ) makes it hard to determine the optimal bit-width for each layer.
We propose a joint training scheme that can obtain all indicators at once.
For example, MPQ search on ResNet18 with our indicators takes only 0.06 seconds.
arXiv Detail & Related papers (2022-03-16T03:23:50Z) - OMPQ: Orthogonal Mixed Precision Quantization [64.59700856607017]
Mixed precision quantization takes advantage of hardware's multiple bit-width arithmetic operations to unleash the full potential of network quantization.
We propose to optimize a proxy metric, the concept of networkity, which is highly correlated with the loss of the integer programming.
This approach reduces the search time and required data amount by orders of magnitude, with little compromise on quantization accuracy.
arXiv Detail & Related papers (2021-09-16T10:59:33Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z) - WaveQ: Gradient-Based Deep Quantization of Neural Networks through
Sinusoidal Adaptive Regularization [8.153944203144988]
We propose a novel sinusoidal regularization, called SINAREQ, for deep quantized training.
We show how SINAREQ balance compute efficiency and accuracy, and provide a heterogeneous bitwidth assignment for quantization of a large variety of deep networks.
arXiv Detail & Related papers (2020-02-29T01:19:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.