RetinexDual: Retinex-based Dual Nature Approach for Generalized Ultra-High-Definition Image Restoration
- URL: http://arxiv.org/abs/2508.04797v1
- Date: Wed, 06 Aug 2025 18:15:05 GMT
- Title: RetinexDual: Retinex-based Dual Nature Approach for Generalized Ultra-High-Definition Image Restoration
- Authors: Mohab Kishawy, Ali Abdellatif Hussein, Jun Chen,
- Abstract summary: RetinexDual is a novel Retinex theory-based framework designed for generalized Ultra-High-Definition Image Restoration (UHD IR) tasks.<n>We evaluate RetinexDual on four UHD IR tasks, namely deraining, deblurring, dehazing, and Low-Light Image Enhancement (LLIE)
- Score: 5.075864600930347
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in image sensing have elevated the importance of Ultra-High-Definition Image Restoration (UHD IR). Traditional methods, such as extreme downsampling or transformation from the spatial to the frequency domain, encounter significant drawbacks: downsampling induces irreversible information loss in UHD images, while our frequency analysis reveals that pure frequency-domain approaches are ineffective for spatially confined image artifacts, primarily due to the loss of degradation locality. To overcome these limitations, we present RetinexDual, a novel Retinex theory-based framework designed for generalized UHD IR tasks. RetinexDual leverages two complementary sub-networks: the Scale-Attentive maMBA (SAMBA) and the Frequency Illumination Adaptor (FIA). SAMBA, responsible for correcting the reflectance component, utilizes a coarse-to-fine mechanism to overcome the causal modeling of mamba, which effectively reduces artifacts and restores intricate details. On the other hand, FIA ensures precise correction of color and illumination distortions by operating in the frequency domain and leveraging the global context provided by it. Evaluating RetinexDual on four UHD IR tasks, namely deraining, deblurring, dehazing, and Low-Light Image Enhancement (LLIE), shows that it outperforms recent methods qualitatively and quantitatively. Ablation studies demonstrate the importance of employing distinct designs for each branch in RetinexDual, as well as the effectiveness of its various components.
Related papers
- One-Step Diffusion-based Real-World Image Super-Resolution with Visual Perception Distillation [53.24542646616045]
We propose VPD-SR, a novel visual perception diffusion distillation framework specifically designed for image super-resolution (SR) generation.<n>VPD-SR consists of two components: Explicit Semantic-aware Supervision (ESS) and High-frequency Perception (HFP) loss.<n>The proposed VPD-SR achieves superior performance compared to both previous state-of-the-art methods and the teacher model with just one-step sampling.
arXiv Detail & Related papers (2025-06-03T08:28:13Z) - FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss [5.349799154834945]
This paper introduces Frequency Consistency for Implicit Neural Representation (FreqINR), an innovative Arbitrary-scale Super-resolution method.
During training, we employ Adaptive Discrete Cosine Transform Frequency Loss (ADFL) to minimize the frequency gap between HR and ground-truth images.
During inference, we extend the receptive field to preserve spectral coherence between low-resolution (LR) and ground-truth images.
arXiv Detail & Related papers (2024-08-25T03:53:17Z) - HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved
Diffusion Models [38.74983301496911]
Hyperspectral image (HSI) restoration aims at recovering clean images from degraded observations.
Existing model-based methods have limitations in accurately modeling the complex image characteristics.
This paper proposes an unsupervised HSI restoration framework with pre-trained diffusion model (HIR-Diff)
arXiv Detail & Related papers (2024-02-24T17:15:05Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
Illumination degradation image restoration (IDIR) techniques aim to improve the visibility of degraded images and mitigate the adverse effects of deteriorated illumination.
Among these algorithms, diffusion model (DM)-based methods have shown promising performance but are often burdened by heavy computational demands and pixel misalignment issues when predicting the image-level distribution.
We propose to leverage DM within a compact latent space to generate concise guidance priors and introduce a novel solution called Reti-Diff for the IDIR task.
Reti-Diff comprises two key components: the Retinex-based latent DM (RLDM) and the Retinex-guided transformer (RG
arXiv Detail & Related papers (2023-11-20T09:55:06Z) - Texture and Noise Dual Adaptation for Infrared Image Super-Resolution [7.310003050012592]
Target-oriented Domain Adaptation SRGAN (DASRGAN) is an innovative framework for robust IR super-resolution model adaptation.<n>DASRGAN operates on the synergy of two key components: 1) Texture-Oriented Adaptation (TOA) to refine texture details meticulously, and 2) Noise-Oriented Adaptation (NOA) to minimize noise transfer.
arXiv Detail & Related papers (2023-11-15T09:35:07Z) - Unpaired Optical Coherence Tomography Angiography Image Super-Resolution via Frequency-Aware Inverse-Consistency GAN [6.717440708401628]
We propose a Generative Adversarial Network (GAN)-based unpaired super-resolution method for OCTA images.<n>To facilitate a precise spectrum of the reconstructed image, we also propose a frequency-aware adversarial loss for the discriminator.<n>Experiments show that our method outperforms other state-of-the-art unpaired methods both quantitatively and visually.
arXiv Detail & Related papers (2023-09-29T14:19:51Z) - Holistic Dynamic Frequency Transformer for Image Fusion and Exposure Correction [18.014481087171657]
The correction of exposure-related issues is a pivotal component in enhancing the quality of images.
This paper proposes a novel methodology that leverages the frequency domain to improve and unify the handling of exposure correction tasks.
Our proposed method achieves state-of-the-art results, paving the way for more sophisticated and unified solutions in exposure correction.
arXiv Detail & Related papers (2023-09-03T14:09:14Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Focal Frequency Loss for Image Reconstruction and Synthesis [125.7135706352493]
We show that narrowing gaps in the frequency domain can ameliorate image reconstruction and synthesis quality further.
We propose a novel focal frequency loss, which allows a model to adaptively focus on frequency components that are hard to synthesize.
arXiv Detail & Related papers (2020-12-23T17:32:04Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.